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ABSTRACT

Spatial patterns in 13C/12C ratios of soil and sedimentary organic carbon are 

related to the woody cover distribution in a landscape and can aid in reconstructing 

environments. Woody cover is, in turn, controlled by climate, hydrology, and 

disturbance regime within an ecosystem. Geomorphology, disturbance, hydrology, and 

climate are the major factors that drive material fluxes and biogeochemical 

transformation in landscapes and should be accounted for when reconstructing past 

environments from soils and sediments.

Disturbance, mainly from fire and other anthropogenic activities such as tree 

harvesting, offset climatic driven moisture availability by creating open woodlands and 

grasslands within a landscape. On the other hand, geomorphology and hydrology exert 

strong effects on floodplains with meandering river systems supporting higher woody 

cover than straight channels. In lakes, the water inflow and outflow dynamics, 

bathymetry, and watershed geomorphology influence the water balance, material fluxes, 

and consequently, the biogeochemical characteristics in the water column and sediments. 

We evaluate how we may reconstruct historic and prehistoric environments through 

geochemical proxies including stable isotopes and mineralogy, and biological proxies 

such as diatoms, charcoal, and palynology.
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PREFACE

This study seeks to identify and account for ecosystem processes that drive 

changes in element cycling and community structure in modern terrestrial and lacustrine 

ecosystems in order to reconstruct past environments. In the first chapter, I describe the 

mass-energy flux conceptual model and outline geochemical and optical methods used to 

account for material fluxes into soil and lake environments. Land cover and land use 

history are incorporated in evaluating changes in ecosystem processes resulting from 

disturbance, in addition to solar energy and precipitation.

In the second chapter, I present my research findings of a study evaluating the 

relationship between soil organic carbon-13 composition (6 13CSoC) and woody cover in 

East Africa. The study employs remote-sensing techniques in developing spatially 

explicit 6 13Csoc models. High spatial resolution orthoimages are used to develop woody 

cover grids whereupon woody cover is computed for statistically evaluating 6 13Csoc 

against water deficit (WD) and precipitation patterns (magnitude and frequency of storm 

events). The results of this analysis are discussed in the context of the efficacy of 

6 13Csoc as a proxy for woody cover in distribution in the tropics and its significance to 

paleoenvironmental reconstructions.

In the third chapter, I present and discuss my research findings from analysis of 

Foy Lake (Montana) sedimentary profiles. I evaluate the 6 13C composition of bulk



organic matter in sediments (6 13CBOM) in relation to current and historic land cover 

changes. Pollen, algae, including diatoms, and 15N composition of bulk organic matter in 

sediments (6 15NBOM), carbon to nitrogen ratio (C/N), and 13C and 18O composition of bulk 

carbonates in sediments (6 13CcacO3 and 6 18OcacO3 respectively) are used as indicators of

ecosystem responses following woody cover changes in the watershed. The changes in 

sediment geochemistry are discussed in the context of historical land use and climatic 

events in the watershed.

In the fourth chapter, I present and discuss palynological and geochemical records 

of Utah Lake integrated in a 43 cm deep sediment core covering historical land cover and 

land use change in the watershed. Variations in stable isotope records of organic matter 

and carbonates, pollen, and charcoal content in sediments are evaluated in relation to 

nutrient cycling and water budget under disturbance and nondisturbance conditions.

In the fifth chapter, I provide a synthesis on the relationship between woody cover 

and 13C/12C ratios of soil organic carbon in East Africa, organic matter fluxes into lakes, 

and changes in material fluxes and element cycling resulting from anthropogenic 

disturbance and woody cover change in lakes in the northwestern USA. I compare and 

contrast the geochemical and palynomorphic records of Utah Lake and Foy Lake in 

relation to geomorphological, hydrological, land cover, and land use differences and 

discuss the implications of these differences on selection of lakes for reconstructing past 

environments. I summarize by discussing how geomorphology, hydrology, disturbance, 

and climate may confound interpretation of soil and sedimentary records through 

interacting and independent effects.

x



CHAPTER 1

BACKGROUND AND RESEARCH QUESTIONS

1.1 Introduction

This study uses modern ecosystems as analogues for reconstructing environments 

in the past. To achieve this objective, woody cover, climate, disturbance, and 

geomorphology are considered within terrestrial and lacustrine contexts. Soil organic 

carbon is used as a proxy for reconstructing woody cover within terrestrial environments 

in the tropics. Pollen influx, charcoal influx, diatom abundance, and stable isotopes 

composition of sediments and lake water are used as proxies for accounting for material 

fluxes in lakes.

The Achilles’ heel of interpreting climate records within soils and sediments is the 

poor understanding of the independent and interactive effects of climate, disturbance, and 

geomorphology. Climate and humans are the main drivers of recent geochemical 

processes and shifts in ecosystem structure in recent decades. Evidence of these drivers 

may be discerned from soils, lake water, and sediments through biological and 

geochemical proxies. Stable isotopes can be used to infer transformation processes 

attributable to human activities and climate based on observed trends in modern 

environments. Understanding the interaction between energy and material fluxes from a 

local or patch scale ( < 1 0  ha area), how such interactions scale-up to regional and global



scale, and how such processes are recorded in soil and sediments is necessary for 

accurate reconstruction of past environments. In order to shed more light on these 

factors, three testable hypotheses are posited:

1. The 13C/12C ratios of soil organic matter in the tropics reflect the contribution of 

C3 and C4 plants, whose distribution is, in turn, related to woody cover 

distribution in Eastern Africa whereas 13C/12C ratios and C:N ratios of 

sedimentary organic matter relate to woody cover around lakes in temperate lakes.

2. Hydrology, geomorphology, climate, and disturbance influence woody cover 

distribution at patch-scale and landscape-scale levels that create a diversity of 

vegetation physiognomies in tropical and temperate environments.

3. Disturbance complicates the interpretation of climate-driven moisture deficit that 

results in the coexistence of open grasslands and forests within an area of similar 

climatic characteristics in the tropics, and masks climate signals integrated in lake 

sediments through increased influx of dissolved and particulate materials from 

inside and outside the lake.

To improve our understanding of the influence of climate, disturbance, hydrology, 

and geomorphology on the biological and geochemical characteristics of soils and 

sediments, spatial and temporal trends in stable isotopes are explored by using the mass- 

energy flux model proposed by Leavitt et al. (2009). Within this conceptual framework, 

the sources of materials and the pathways of their translocation into soils and sediments 

are considered for disturbed and undisturbed states. The mass-energy flux conceptual 

framework is used to evaluate the influences of woody cover, hydrology, and 

geomorphology on the material influx and geochemical fluxes in soils and sediments.

2



1.2 Mass-energy flux framework

Two components of a mass-energy flux conceptual framework are recognized: 

mass and energy (Leavitt et al., 2009). The interaction of these two components 

determines ecosystem structure as well as geochemical and biological processes 

characterizing that ecosystem. For instance, solar radiation accounts for 99.8 % of 

earth’s energy and powers micrometeorological processes, soil heat flux, soil 

temperature, sensible heat flux, surface and air temperatures, wind and turbulent 

transport, evapotranspiration, growth, and activity of plants and animals (Kumar et al., 

1997). Woody cover distribution patterns, in turn, determine the herbaceous cover 

distribution patterns within and between tree canopies. The interactive effects between 

solar radiation and moisture availability are manifested in the distribution of woody cover 

and the water balance of lake systems (Figure 1). In this study, solar radiation influence 

on water balance in soils and lakes is explored with regard to woody cover distribution 

patterns and isotopic indicators (18O and D abundance) of lake water evaporation, 

respectively.

1.3 Local and regional controls of water balance

Solar energy is the principal driver of atmospheric circulation, and it influences 

precipitation patterns, including the location and strength of jet streams, frontal 

boundaries, the monsoon systems, El Nino Southern Oscillation (ENSO) events, the 

Pacific Decadal Oscillation that varies on a 20-30 year cycle (McCabe et al., 2003; Loik 

et al., 2004; Chesson et al., 2004), and the Atlantic Multidecadal Oscillation (AMO) that 

varies on a 65-80 year cycle (McCabe et al., 2003). Water is the primary factor that

3
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Figure 1. An illustration of the impact of solar radiation on evaporation and evapotranspiration in lakes and on land, respectively, and 
the influence of woody cover on ground shading.
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limits plant growth and moisture pulses bring nutrient resources that drive net primary 

production (Schwinning & Sala, 2004) and influence species dynamics through 

recruitment (Ostfeld & Keesing, 2000; Lundholm & Larson, 2004). It is therefore 

expected that water is the primary factor driving shifts in ecosystem structure temporally 

and spatially.

Solar radiation affects lake water budget through interactive effects of lake 

bathymetry, hydrology, atmospheric temperatures, and humidity. Incoming solar 

radiation that is predominantly of short wavelength is absorbed by water molecules, 

generating heat at the lake surface (Figure 2). The kinetic energy gained by water 

molecules near the surface helps break intermolecular bonds, resulting in the escape of 

water into the vapor phase. Some heat energy is lost from the water surface as sensible 

heat flux. Beneath the lake surface is a layer of heat exchange with the atmosphere 

where heat energy is transmitted from the surface through conduction and convention 

currents. The heat exchange gradient layer has a relatively constant temperature. 

Beneath the heat exchange layer is a layer of rapid decrease in temperature (thermocline) 

that separates surface waters from cold deep waters. The thermocline may either be 

permanent in very deep lakes, seasonally transient in moderately deep lakes, or non

existent in very shallow lakes. Overall, heat and light derived from solar radiation 

influence organic matter synthesis and carbonate precipitation in lakes.

1.4 Interactive effects of solar radiation and woody cover 
on herbaceous cover in the tropics

Woody cover shading lowers evapotranspiration in the understory. At a patch 

scale, vegetation alters the microclimate through absorption, reflection, and scattering of

5
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radiation by the canopy (Figure 3). From an individual tree standpoint, the amount of 

transmitted light reaching Earth’s surface through the tree canopy is attenuated in 

accordance to Beers Law (Figure 3). Consequently, canopy shading is denser 

immediately underneath the trees, and becomes lighter between canopies. At a patch 

scale, the degree of shading depends on the fraction of woody cover in that patch (FWC) 

that impacts the abundance and composition of herbaceous plant community in the 

understory. Herbaceous species are generally shallow-rooted and hence more sensitive to 

moisture deficit than woody plants. Consequently, the abundance of herbaceous 

community is strongly influenced by moisture abundance in the surface horizons of the 

soil. Woody species create refugia for herbaceous species by lowering the soil surface 

temperature through shading and reducing the evapotranspiration.

1.5 Biological and geochemical indicators of disturbance 
in soils and lake sediments

Climate and humans have become the main drivers of geochemical processes and 

shifts in ecosystem structure in recent decades and their effects may be discerned in soils, 

lake water, and biological and geochemical proxies in sediments. The mass-energy flux 

model identifies disturbance as “an information filter” (sensu Leavitt et al., 2009) because 

materials transformed and translocated into lakes through disturbance do not necessarily 

reflect the primary original climatic signal created by solar radiation and precipitation. 

Further, hysteresis in woody plants’ response to climatic changes is asynchronous relative 

to that of phytoplankton community which respond rapidly to climatic variations (Leavitt 

et al., 2009). Consequently, understanding the independent and interactive effects of

7
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levels of transmitted light ( l b )  through the canopy in accordance to Beers Law.



moisture drivers and disturbance is critical in decoupling the climatic and disturbance 

history in the past environments. A multiproxy approach may therefore provide data 

necessary for accounting for material sources and ecosystem processes arising from 

disturbance or climate forcing within spatial and temporal domains. Changes in fossil 

and subfossil charcoal, pollen, and diatom abundance as recorded in lake sediments 

through time may be used to indicate changes in ecosystem structure within lakes and 

their watersheds that allow a link between vegetation structure in watershed and lake 

processes to be established. Palynomophic and geochemical proxies may therefore be 

used independently to infer origin of particulate and dissolved substances accumulating 

in lake sediments as well as to identify transformation processes accompanying their 

influx (Figure 4).

1.6 Stable isotope indicators of disturbance, moisture 
fluxes, and woody cover

Isotope values are calculated as shown in Equation 1.

9

bX  (%o) =1000*(Rsample /Rstandard - 1) Equation 1

where ‘X  is either 15N, 18O, or 13C, R  is 15N / 14N, 18O / 16O, or 13C / 12C, respectively, and 

bX  is expressed in permil (%) relative to internationally agreed standards: V-PDB for

both carbon and oxygen, and atmosphere (AIR) for nitrogen S15N, respectively. The 

process that results in isotopic enrichment is referred to as isotopic fractionation. The
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isotope fractionation factor relates to substances A and B. In equilibrium reactions, there 

is no “substrate” or “product”; isotope fractionation describes isotope equilibrium 

reactions, a related term is “discrimination” as in a nonreversible reaction involving 

substrate and production (e.g., photosynthesis).

11

1 0 0 0  + 8A r  „---------- — Equation 2
1 0 0 0  + 8b

a A - B

1.6.1 Stable isotope indicators of disturbance

The transport of materials arising from disturbances in the watershed is modulated 

by hydrology and geomorphology. Nutrient influxes in lakes from riverine transport 

(Mayer et al., 2002) or atmospheric deposition (Nannus et al., 2003; Saros et al., 2003) 

can potentially alter lake nutrient budgets and can trigger changes in lake productivity 

and plankton community composition. Studies on isotopic imprints of patch-scale (e.g., 

Macharia et al., 2012) and watershed-scale (Mayer et al., 2002) disturbance can provide 

conceptual understanding of how such disturbances may influence the stable isotope 

composition of soils and sediments and thus aid in interpreting the history of 

disturbances. For instance, S15N of nitrates for watersheds in eastern USA with limited 

land use range from 3.5 to 5.5%o and watersheds with greater than 15% agricultural or 

urban land use range from 6  to 9% (Mayer et al., 2002). In reconstructing past and 

predicting future changes in climate and disturbance regimes, watershed-scale changes in 

nutrient budgets associated with urban development and agriculture must be factored in.



1.6.2 Stable isotope indicators of energy flux in lakes

The influence of solar radiation on lake evaporation is manifested through 18O and 

2H (D) enrichments of lake water relative to meteoric water sources (e.g., Henderson & 

Shuman, 2009). Deuterium (D) and 18O fractionate together, typically in 8:1 ratio in the 

sea-atmosphere boundary layer where the vapor and liquid phase are at equilibrium 

(Craig, 1961). Clouds form at a relative humidity of 85% at sea level and subsequent 

precipitation shows a deuterium excess o f+ 1 0 %, a relationship illustrated by the global 

meteoric waterline (GMWL) (Craig, 1961). Lake waters that are isotopically the same as 

precipitation plot on or close to the GMWL, whereas evaporated lake waters plot off the 

GMWL on a local evaporation line (LEL) (Leng et al., 2004; Figure 5). For instance, 

lakes in northern New Mexico and southern Colorado receive significant moisture inputs 

during the summer monsoon and have an isotopic composition of meteoric water skewed 

towards summer precipitation (Henderson & Shuman, 2009).

When S18OCaCO3 is used to estimate changes in lake water balance in the past, 

carbonate sources (detrital or autochthonous) must be considered. In temperate 

environments, the amount and forms of carbonates deposited in sediments vary with 

summer photosynthesis (e.g., McConnaughey et al., 1994; Drummond et al., 1995).

Calcite precipitation mainly occurs in the epilimnion where photosynthesis and heat 

exchange between the lake and atmosphere occurs (e.g., McConnaughey et al., 1994; 

Drummond et al., 1995; Sharpley, 2010). However, calcite derived from algal 

photosynthesis may dissolve as it is translocated to the hypolimnion of groundwater-fed 

lakes where CO2 fugacity is high because of the influx of CO2 derived from soil

12
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respiration delivered through groundwater transport (Sharpley, 2010). Further, high 

magnesium ion concentration ([Mg2+]) in groundwater-fed lakes may interfere with 

nucleation of calcium carbonate and hence result in magnesium calcite formation 

(McConnaughey et al., 1994; Drummond et al., 1995). Other processes that include 

sedimentation, organic matter oxidation, and evaporation must be considered when 

interpreting isotopic signals imprinted in sedimentary carbonates because they influence 

the 513CcacO3 and 518OCaCO3 values (Figure 6 ). Reconstruction of water balance history of 

lakes from stable isotope of carbonates is achieved through palaeo-temperature equations 

developed from calibration experiments in laboratories and field sediment trap 

experiments that assume an equilibrium temperature of carbonate precipitation. Whilst 

6 18O of carbonate (6 18OCaCO3) is reported relative to PDB, 6 18O and 6 D of water (6 18OH2O 

and 6 DH2o, respectively) are typically reported relative to SMOW. Various equations 

have been developed to relate 6 18OH2O and 6 DH2O to 6 18OCaCO3 (Appendix A).

1.6.3 Stable isotope indicators of woody cover in the tropics

Soil organic carbon reflects how open the vegetation is in a particular 

environment. More open environments receive higher levels of solar insolation and 

therefore experience higher temperature and greater evapotranspiration than closed 

canopy forest. C4 plants are more adapted to environments that experience water stress 

since they have evolved a CO2 concentrating mechanism that allows more efficient 

photosynthetic pathways at high temperatures and under water stressed conditions. C3 

plants are more sensitive to water stress than C4 plants and lack the CO2  concentrating 

mechanism.

14



15

Aridity 48 1 8 0

- Oxidation of large 
amounts of organic 
matter

-v e ^
Release of 13C from 
organic matter

Exchange with 
atmospheric CO2
^ _ _ ^ + v e

- Sedimentation of large 
amounts of organic matter

- Limestone catchment

Humidity

Figure 6 . A schematic diagram showing possible S180  and S13C trajectories of lake 
carbonates based on lake water evaporative enrichments, sedimentation, and oxidation of 
organic matter (Modified after Leng et al., 2004).



When 6 13C values of soil organic carbon (6 13CsoC) are used to reconstruct the 

vegetation structure in the tropical systems, the role of disturbance on the distribution 

patterns of woody cover at local and regional moisture gradients must be considered. 

Studies show that woody cover distribution influences the distribution of C3 and C4 

vegetation in the tropics that is predictable from 6 13CsoC (e.g., Cerling et al., 2011). This 

study evaluates the relationship between solar radiation and woody cover distribution, 

and the influence of local and regional controls on water and nutrient budgets as woody 

cover, by accounting for materials fluxes from disturbance and solar radiation.

In the tropics, high soil surface temperatures subjects soils to high evaporations 

that results in low water potential (high moisture deficit), favoring plants that use the C4 

photosynthetic pathway more than the C3 plants. Woody cover in the tropics controls the 

distribution of C3 and C4 by providing shade that attenuates the impact of solar radiation 

on light intensity and moisture deficit. Reduced soil insolation from shading by woody 

species results in lower soil temperatures and evapotranspiration in shaded compared to 

unshaded areas (Figure 4). The FWc therefore determines the 6 13CsoC through the 

fractional woody cover (FWc) influence on the abundance of C3 relative to C4 plant 

species in the tropics. In contrast, the influence of FWc on the 6 13CsoC of temperate 

environments is hard to model because herbaceous plants including many grasses and 

woody species are predominantly C3. The density of woody cover in a given patch 

influences the proportion of herbaceous plants that use the C3 relative to the C4 carbon 

fixation pathway. The contribution of organic matter by woody species and C3 herbs to 

soils is greater as woody cover increases, which results in a more negative 6 13CsoC than 

in grasslands or wooded grasslands. Canopy shading lowers the soil temperatures and
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light intensity in the understory, favoring C3 herbs in patches with a higher FWC while C4 

herbs become more competitive in open grassland and woodland environment (low FWC) 

(Figure 7).

The abundance of C4 plants in temperate ecosystems varies seasonally, becoming 

more abundant towards the summer and less abundant towards the winter. As a 

consequence, C3 plants dominate the herbaceous communities in temperate environments 

with C4 plants exerting less influence on 6 13Csoc than in tropical environments. It is 

worth noting that much of the American Midwest (e.g., Iowa) is considered temperate but 

has a lot of C4 grasses.

1.7 Research design and methodology

In this study, we evaluate the geospatial relationship between percent woody 

cover and 6 13Csoc models, potential evapotranspiration, and land use in landscapes for 

imprints of climate and disturbance (Figure 8 ). We utilize high-resolution satellite 

imagery to evaluate the relationship between percentage woody cover and 6 13Csoc values 

in East Africa. This study provides an analogue for interpreting paleoenvironments in 

East Africa, an important region in understanding mammalian (including hominid) 

evolution.

This research tests the following hypotheses:

1. Water is the primary factor driving shifts in ecosystem structure temporally and 

spatially.
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Figure 7. An illustration of the relationship between tree clustering patterns and herbaceous cover distribution patterns. The C3 plants 
(mainly dicots) are more abundant in shaded than unshaded environments, while C4  plants (mainly monocots) are more abundant in 
unshaded than in shaded areas.
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Figure 8. An illustration of the methodology employed in this study to evaluate the 
influence of climate, land use, and geomorphology on soils and sediments.



20

2. Disturbance masks isotopic signals in soils and sediments set by lake moisture 

drivers.

3. Geomorphology influences hydrology and moisture distribution patterns within 

landscapes and also determines the rates of terrigenous material influx into lakes.

1.8 Relevance of research

This study contributes to the development of methodologies and conceptual 

understanding on the impact of climatic, geomorphic, and ecosystem disturbances to the 

geochemical and biological composition of lake sediments. These efforts are geared to 

improving the interpretation of the biogeochemical signature imprinted in soils and 

sediments relative to geomorphic, anthropogenic disturbances, and climatic factors that 

caused them. Accurate reconstruction of historic and paleohistoric records are important 

in fostering the understanding of the interaction between climate change, effects of land- 

use change, ecosystem monitoring and restoration projects, and providing contexts for 

interpreting the fossil record. Further, for recognition of the influence of global climate 

change, and degradation of land and water quality, such studies are critical in future 

management of land and water resources.
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CHAPTER 2

IMPLICATIONS OF SPATIAL VARIATIONS IN SOIL ORGANIC 

MATTER 613C VALUES ON RECONSTRUCTING 

PALEOENVIRONMENTS IN 

EASTERN AFRICA

2.1 Introduction

Tropical plants principally use two photosynthetic pathways: the "C3 -" and "C4- 

photosynthetic pathways." Almost all dicots, including many herbaceous plants, use the 

C3 pathway, whereas most tropical grasses and sedges (monocots) are C4  plants. Isotopic 

differences arise from the two primary photosynthetic pathways of the Calvin cycle (C3) 

and the Hatch-Slack cycle (C4) (O’Leary, 1981, 1988) that differ in leaf-level 13C 

discrimination during carboxylation reactions (Farquhar et al., 1982). Consequently, the

13 13C3 and C4 vegetation are distinct in foliar C (6 Cfc) values, with C3 plants averaging ~ 

-27.5%o while C4 average -12.0%o (Smith & Epstein, 1971). Isotope values are calculated 

as shown in equation 3.

6X  (%%) = 1000*(̂ sample /R standard 1) Equation 3



where ‘X  is either 15N, 18O, or 13C, R is 15N /14N, 18O /16O, or 13C /12C, respectively, and 

6X is expressed in permil (%o) relative to internationally agreed standards: V-PDB for

both carbon and oxygen, and atmosphere (AIR) for nitrogen S15N, respectively.

The East African rift system contains hominin-bearing deposits that are important 

archives for reconstructing paleovegetation in the Neogene (Feibel et al., 1991). In East 

Africa, tectonic uplift has played a significant role in drastic reorganization of 

atmospheric circulation, leading to more arid and open “savannas” over the last 8 million 

years (Sepulchre et al., 2006). Between 10 and 6 Ma, ungulate mammals shifted from 

C3 -dominated diets in the earlier middle to late Miocene to C4  (grass-dominated) diets 

(Leakey et al., 1996; Uno et al., 2011). The tectonics movements also caused 

geomorphic changes, altering the flow patterns of major rivers (including Omo) in the 

East African Rift system throughout the Pleistocene (Brown & Feibel, 1991; Bruhn et al., 

2011; Levin et al., 2011).

The 613C values of soil carbonates indicate that vegetation cover in the Omo- 

Turkana basin was open (less than 40% woody cover) over the last ~6 million years 

(Cerling et al., 2011) with temperature comparable to that of the modern day (mean 

annual temperature ~ 29 °C) (Passey et al., 2010). As a consequence, riparian corridors 

were preferred habitats of hominins (WoldeGabriel et al., 1994) as most hominin sites 

occur around riparian habitats (e.g., Johanson et al., 1982; Leakey et al., 1995; Asfaw et 

al., 1999). Modern riparian corridors contain a mosaic of grasslands, open bushlands, 

and gallery forest that are hotspots of biodiversity (e.g., Measey & Tolley, 2011) and 

influence the areal distribution of ungulates in this region (Feibel et al., 1991). The range 

of land cover types associated with riparian corridors are thought to have presented a
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range of biomes that Homo erectus may have exploited during dispersal out of Africa 

(Huffman, 1999, 2001; Bettis et al., 2009).

To accurately assess the impact of climate change in this region, spatially explicit 

criteria for reconstructing environments that reduce ambiguity must be developed to link 

paleoecology to patterns and processes of early hominid evolution (Kingston, 2007). 

Such criteria would enhance conceptualization, modeling, and interpretion of 

environmental data at a given spatial or temporal resolution (Monger et al., 2010). For 

instance, the leaf level 13C fractionation varies with moisture availability, photon flux 

density, relative humidity, and temperature (Farquhar et al., 1989) that scale-up from 

leaf-scale, to patch-scale, all the way to regional- and global-scale (Still et al., 2003). 

Consequently, different combinations of these ecological factors influence the 6 13Cfc of 

C3 and C4 plants variously.

The 6 13C values of soil organic carbon (hereafter 6 13C SOC) from a variety of sites 

ranging from forest to desert are related to woody cover of the landscape (e.g., Cerling et 

al., 2011, 2010; Wynn & Bird, 2010). Two end member mixing models are often used

13when reconstructing paleovegetation from 6  Csoc (Equations 4-5: Wang et al., 2008).

C3 % = (6 13Csom -  6 13C c 4) / (6 13C c 3 -  6 13C c 4 ) x 1 0 0 Equation 4 

Equation 5C4 % = 1 0 0  - C3 (%)

However, fractional woody cover (FWC) is nonlinearly related to total 6 13CSOC 

(Magnusson et al., 2002; Wynn et al., 2006; Wynn & Bird, 2008; Wang et al., 2009; 

Cerling et al., 2010; Cerling et al., 2011). Because of the presence of C3 forbs and herbs,



the contribution of C3 woody cover to total vegetation is not a simple linear mixing 

relationship between C3 and C4 end members, as is implied by Equations 4 and 5 (Cerling 

et al., 2010; Cerling et al., 2011). Understanding the relationship between FWc and 

6 13Csoc is therefore key to reconstructing vegetation cover from paleosols.

Fine spatial resolution (below 1 m) images are required for mapping individual 

trees and shrubs (Moran et al., 1997) and for determining the FWC for modeling 6 13CSOC 

(Goetz et al., 2003). This is because low-resolution imagery may miss strips and patches 

of vegetation smaller than the dimensions of individual pixels and may be assigned 

extraneous land cover classes during classification (Foschi & Smith, 1997). High spatial 

resolution orthoimagery, including IKONOS (Goetz et al., 2003), Quickbird (Mueller & 

Pierce, 2003; Wang et al., 2009), and aerial photographs (Bai et al., 2009) yield high 

quality estimates of woody cover for determining soil properties. However, generating 

accurate 6 13CSOC models is often a challenge because C4 grasses commonly dominate the 

understory and thus influence the 6 13CSOC values as FWC changes.

In the current study, we test the hypothesis that soil 6 13CSOC values indicate 

woody cover distribution patterns that are influenced by tree local disturbance and 

moisture availability at patch-scale (< 10 ha) and water deficit at landscape-scale. We 

establish the spatial relationship between Fwc and 6 13Csoc within East Africa at patch- 

scale and landscape-scale in order to reconstruct probable past vegetation structure from 

S13CSOC. We use spectral parameters of high-resolution orthoimagery to estimate FWC at 

selected sites in eastern Africa, and to generate spatially predictive models for 6 13CSOC 

values. We evaluate the models generated against the regional moisture deficit to 

determine the role of climate on 6 13CSOC values.

27



2.2 Methods and materials

2.2.1 Study area

The study sites include closed canopy forests, closed woodlands, open woodlands, 

bushland/thickets, and grasslands in Kenya and Ethiopia (Figure 9) and encompass nearly 

the entire range of habitat types described by United Nations Scientific and Cultural 

Organization (UNESCO) (White, 1983).

2.2.2 Soil sampling and preparation

From each site, soils samples (0 to 10 cm depth) were collected in canopy gaps 

and under the canopies of woody vegetation, sieved through a 140 mesh sieve to remove 

litter and other plant fragments, and dried at 60 °C for 48 hrs. Subsamples for analysis of 

soil organic matter were treated with excess 0.1N HCl to remove soil carbonates, and left 

to react for 48 hrs. The samples were then transferred into 1.7 ml centrifuge vials, placed 

into a centrifuge, and spun at 4000 rpm for five minutes, following which the supernatant 

was decanted. Remaining acid was rinsed from the soils by adding distilled water, 

centrifuging, and decanting the supernatant. Rinsing was repeated with distilled water 

until the pH became neutral (pH ~ 7.0). The soils were then dried in an oven at 60 °C for 

48 hrs.

2.2.3 Stable isotope analysis of soil organic matter (SOM)

Treated soils for analysis of 6 15Nsom and 6 13Csom were combusted in a Costech 

4010 Elemental Analyzer at 1650 °C and inlet to a Finnigan® MAT 252 Isotope Ratio
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Figure 9. Map of study sites. Of the 15 sites, 14 are located in Kenya while 1 site 
(Awash) is in Ethiopia. These sites vary in woody cover as influenced by climate and



Mass Spectrometer (IRMS) in continuous flow mode. Isotope values were calculated as 

shown in Equation 3. Carbon and nitrogen yields were determined from the preliminary 

samples, optimum sample sizes established, and samples run in duplicate with newly 

determined masses. The analytical precision of isotopic analysis of 6 15Nsom and 6 13CSOM 

are 0 .1 %o and 0 .2 %o, respectively.

2.2.4 Image classification and FWC analysis

Radiometrically and geometrically corrected high-resolution orthoimagery was 

acquired from EMAP Inc. (e.g., IKONOS, Quickbird, Geoeyel, and WV1). The images 

were selected such that the study sites were cloud free and the entire image had less than 

15% cloud cover (Table l). There were insufficient ground control points to perform 

further geometrical corrections.

2.2.5 Patch-scale image analysis

1 - 1 0  hectare areas centered on the soil sample sites were clipped from the 

orthoimagery and classified. All image classification was performed in ENVI 4.7 (ITT 

VIS Inc.). Various supervised classification algorithms, including spectral angle mapper, 

Mahalanobis distance, minimum distance, maximum likelihood, and parallelepiped 

classifiers were used on the red-blue-green (RGB -  also called true-color) imagery 

(IKONOS and Quickbird). An error matrix was generated from independent training sets 

and classification accuracy assessed with the Kappa statistic (Equation 6 ).
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Table 1. High spatial resolution imagery from different sensors used in woody cover 
estimation. Riparian corridors, grasslands maintained by burning (Shimba Hills), and 
agricultural areas are included in woody cover calculations. The images vary in spectral 
and spatial resolution but generally have pixel sizes less than a meter.________________

Location Latitude
Degrees
O

Longitude 

Degrees (o)

Sun
Angle
Azimuth
Degrees
o

Sun
Elev.
Degrees
o

Av. Sat.
Elev.

Degrees
O

Tot
Area

km2

Adj.
Area
km2

Sensor Acquisition

date
Arabuko
Sokoke -3.30 39.91 126.3 57.6 80.5 25.1 15.6 WV01 14-Jan-2008
Awash
Ileret

11.09 40.54 125.9 71.2 72.9 25.3 21.5 QB02 23-Sep-2008
26-Nov-

Bushland 4.29 36.26 146.3 59.4 60.8 25.2 25.2 WV01 2008
Ileret Riparian 4.32 36.27 73.3 66.3 87.0 25.2 21.5 QB02 23-Sep-2008

25-Aug-
Kakamega 0.37 34.87 97.3 68.0 84.2 25.0 15.9 QB02 2004
Meru forest -0.07 38.42 103.4 61.8 ND 48.9 48.9 GeoEye-1 4-Mar-2009
Meru open 0.20 38.23 101.9 70.5 80.5 25.5 18.3 WV01 2-Oct-2008

Mzima
Springs -2.96 38.04 127.3 64.9 64.2 25.2 18.9 WV01 30-Jan-2010

Nairobi N P -1.34 36.79 128.0 61.3 50.5 28.7 24.5 WV02 27-Jan-2010
Nakuru Forest 

Nakuru
-0.40 36.11 125.7 55.3 81.8 26.7 24.2 QB02 22-Jan-2004

30-Nov-
Bushland
Nakuru

-0.32 36.04 144.5 63.5 59.4 25.9 25.3 WV01 2008
30-Nov-

Grassland -0.44 38.42 144.6 63.4 60.1 25.6 18.5 WV01 2008
Samburu 0.59 37.53 142.9 60.7 58.4 26.1 26.1 QB02

IKONOS-
7-Jan-2008

Shimba Hills -4.24 39.41 126.4 59.3 ND 49.1 31.6 2
IKONOS-

13-Jan-2008

Tana River -1.88 40.14 114.2 62.5 ND 49.0 28.6 2 15-Feb-2007
Tsavo West -2.74 38.13 100.5 70.6 76.0 17.4 11.7 WV02 27-Jan-2010

ND signifies a field for which no data are available.
Adj. Area refers to the actual area used to compute woody cover after clouds, riparian corridors, and areas impacted by humans 
(i.e., agricultural and urban areas) are masked out. In some images, the adjusted area is equal to the total area (Tot. Area) 
encompassed by the orthoimagery

Ave. Sat. Elev. stands for the average satellite elevation angle from the ground (Nadir) when the photo was taken.
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Table 1. continued

Spectral
Res.

Spatial
Res.

m

Orthorectification
Random 

Bias error error 
(m) (m)

Cloud
cover

%

Fwc

%

Accuracy

%

Kappa

Coefficient
PAN 0.5 9.7 0.1 0.0 ND ND ND
RGB 0.60 19.09 0.12 9.99 12.70 90.52 0.86
PAN 0.5 20.8 0.1 0.3 ND ND ND
PAN 0.6 20.22 0.12 0.00 22.81 95.13 0.90
RGB 0.60 30.55 0.12 7.10 77.04 98.12 0.96
RGB 0.50 20.50 0.25 0.00 64.84 98.95 0.98
PAN 0.5 16.00 14.08 0.10 ND ND ND
PAN 0.5 16.9 0.1 0.0 ND ND ND
RGB 0.50 3.49 0.10 0.00 30.86 96.99 0.89
RGB 0.6 4.43 0.40 10.0 41.49 95.96 0.92
PAN 0.5 19.6 0.1 0.0 ND ND ND
PAN 0.5 18.4 0.1 0.0 ND ND ND
RGB 0.60 26.45 0.12 0.00 19.79 96.90 0.96
RGB 0.8 20.8 0.1 14.00 64.59 95.92 0.93
RGB 0.80 4.39 0.40 1.00 28.1 92.20 0.89
RGB 0.5 18.2 0.1 0.0 38.3 96.4 0.95



K = P (a) -  P (e)
1 -  P(e)

P(a) is the proportion of ground-truth pixels observed to agree with those of the classified 

image, and P(e) is the hypothetical probability that ground-truth pixels agree with those 

of the classified image by chance alone (Cohen, 1968). The maximum likelihood 

approach yielded the best classification result and was adopted in subsequent 

classification of RGB imagery.

Decision tree image classification methods combining texture filtering and 

density slicing were employed on panchromatic imagery (WV1, WV2, and GeoEye).

The density slicing classification was done by visual inspection of classified outputs 

under various grayscale value cut-offs. Generating an error matrix and using it to 

compute the Kappa statistic helped assess the classification accuracy.

2.2.6 Landscape-scale image analysis

Supervised image classification of each whole image (landscape-wide) using 

maximum likelihood was performed as outlined in Section 2.4.1, but this time, the 

classification was done for RGB imagery. The details on the classification accuracy are 

shown in Table 1 with the various land cover and land-use elements across the classified 

imagery.

2.2.7 613Csoc modeling

From each thematic land cover grid that included woody vegetation, grasslands, 

base, water, and man-made features, water bodies and manmade features were masked

Equation 6
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out; woody cover binary grids were derived by lumping the woody and shrubs pixels into 

a woody category (DN value = 1) and all other pixels as nonwoody (DN value = 0) 

(Equation 5).

Pixels = { 1woodyoutput [ 0  nonwoody Equation 7

The fractional woody cover grids were computed using a Gaussian filter (PSF Gaussian) 

developed by Frank Varossi (NASA/GFSC;

http://idlastro.gsfc.nasa.gov/ftp/pro/image/psf_gaussian.pro [June 2nd 2011]) that 

resamples pixel values under a weighted scheme (Figure 10). A regression of woody 

cover against 613CSOM (Equation 8; R2 = 0.83):

613CSOC = -9.9725*(arcsin[V[% Woody Cover]]) - 14.128 Equation 8

was used to generate 613CSOC prediction grids for study sites that include patch-scale (1

10 hectare areas) and landscape-scale (>10 hectare area) and their corresponding 

histograms and cumulative frequency curves were computed.

37

2.2.8 Relationship between woody cover and water deficit

In relating climate-influenced water deficit on the woody cover at landscape 

levels, excluding the riparian corridors was necessary to control for the influence of water 

derived from rivers on the immediate floodplain. Developed areas (urban and

http://idlastro.gsfc.nasa.gov/ftp/pro/image/psf_gaussian.pro
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Figure 10. An illustrated procedure for transforming woody cover grids of various spatial 
resolutions into equally weighted output grids for 613CSOC modeling. Fine resolution 
imagery yields classification results that bear closer resemblance to the original crown 
outline than coarse resolution imagery. The Gaussian filter resamples woody cover 
pixels such that the higher resolution pixels are weighted more heavily than coarse 
resolution pixels. The least common multiple (LCM) of the spatial resolutions of the 
input imagery becomes the standardizing function that determines how many pixels of 
the input grids are used in developing images with a common spatial resolution. The 
desired Full-Width Half-Max (FWHM) is specified as an array of pixels in the x and y 
dimensions of the image that act as normalizing centers of the Gaussian filter. The pixel 
values of the resulting output grid are normalized, hence allowing for more accurate 
modeling of 613CSOC and subsequent comparisons among study areas.
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agricultural areas), grasslands maintained by burning, and tree shadows were also masked 

out. Water deficit (the difference between precipitation and the amount of moisture that 

would be lost to evapotranspiration under unlimited moisture supply (Levin et al., 2006; 

Wynn et al., 2006) was compared with woody cover (Wynn et al., 2006). Water deficit 

was modeled through Thornthwaite’s equation for potential evapotranspiration 

(Thornthwaite, 1948) because climate data in East Africa are limited:

37

ETo=C(10*tmed /I)a Equation 9

I = £ i Equation 10

i= (tmed/5) 15 1 4  Equation 11

a = 0.49239 + 1792 x 10-= I -  771 x 10-’ I2 + 675 x 10- I3 Equation 12

where ETo is the potential evapotranspiration (mm d-1); I is the annual heat index (the 

sum of 1 2  monthly index values i); i is the monthly heat index; and tmed is the mean daily 

temperature (°C). a = coefficient, which varies with the heat index. The values are then 

corrected for day length and computed from the Julian date and latitude using equations 

of Forsythe et al. (1995) and number of days in a month. The rainfall dataset was derived 

from data in the 1975 report of the East African Meteorological Department (EAMD) and 

from other published weather data for places where EAMD data were not available.

2.3 Results

2.3.1 Woody cover classification

The results of woody cover classification reveal variations in woody cover at 

landscape-scales (~25 km2) where hydrology (e.g., Awash, Samburu, and Tana River),



anthropogenic disturbance (e.g., Kakamega forest and Shimba Hills Game Reserve), and 

topography (e.g., Nakuru) have a significant influence (Figure 11).

The relationship between 6 13CSOM and FWC for East African sites analyzed in this 

study is nonlinear and using the variance stabilizing arcsin squareroot transformation 

(i.e., arcsin[V[% Woody Cover]]) gives the best fit line to relate the dependent variable 

that was a fraction cover to 6 13CSOM (Figure 12). There is a greater variation at 40%

FWC whereby one site (Nakuru Bush) has woody cover 40% and 6 13CSOM value of - 

15.8% while another site (Turkwell) with a similar woody cover (41%) has 6 13CSOM (

24.4%). These disparate values are a manifestation of the relative contribution of grass 

cover on soil organic matter that may be influenced by edaphic factors at patch-scale 

(<10 ha) as manifested in wide-ranging values in 6 13CSOM values (Figure 13) and also at 

landscape-scale (Figure 14).

2.3.2 Relationship between woody cover and water deficit

The water deficit varies significantly among sites, with Ileret having the greatest 

water deficit (1604 mm/year) while Kakamega Forest has the least (245 mm/year) (see 

Table 2). However, Arabuko Sokoke has the greatest woody cover (97%) while Tsavo 

West has the lowest woody cover (~ 9%).

The relationship between moisture deficit and woody cover of upland 

(nonriparian) sites is linear (Figure 15) but weakly correlated (R2 = 0.31). The p<a 

values (df 1,8; a0.05) indicate there is a relationship between water deficit and woody 

cover. However, the woody cover and water deficit are poorly correlated.
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Awash Tana River

W oody Herbaceous Others

Herbaceous I  Woody H  River EH

W oody Herbaceous Others

Clouds Shade Bare /  light clouds

Figure 11. Results of woody cover classification of selected sites. Cloudy areas are 
excluded in the analysis.
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Fractional woody :uYer IfWC)
• 13 • •Figure 12. Woody cover versus measured 5 Csoc (Cerling et al., 2011) with a 

generalized vegetation structure on the left and some examples of the woody cover grids 
(~ 1 ha) on the right. The model integrates the soil samples obtained within the canopy

13and canopy gaps, so that the 5 CSOC variance within site is captured (see data in the 
Appendix A). Nonlinear regression is performed using arcsine and square-root 
transformation of woody cover to achieve the best fit of the data.
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Arabuko sokoke Brachystegia forest (97 %)

Fwc • 0 %

I Fwc : 100%

100 80 60 40 20 0-30 -25 -20 -15 
Woody cover (%) 513C soc (%<>VPDB} 6 1JCsoc (%oVPDB),

C4 dominated : -14.1 

I  C3 dominated: -29.8

Figure 13. Histograms, cumulative frequency curves, and prediction grids of 6 13C so c  for 
7 study sites ranging from 1 to 10 hectare in size and whose woody cover is indicated in 
parentheses. These grids represent areas where the soil samples used to develop the 
regression model were obtained (i.e., subsections of landscape grids in Figure 10). The
lines (—) and (------ ) indicate the average 6 13C so c  values of the soil samples collected
under canopy and in canopy gaps, respectively. These 6 13C so c  trends are expected if the 
sites were to be randomly sampled.
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Kakamega NP

100  80  60  40  20

C4 dominated : -14.1 

C3 dominated: -29.8

100  90 80  70  60  50  40  30  20  10 0 

% Woody cover

C4 dominated : -14.1

C3 dominated: -29.8

C4 dominated : -14.1 

C3 dominated: -29.8

C4 dominated : -14.1 

C3 dominated: -29.8

513Csoc (%oVPDB 5 1SC50c (%oVPDB

C4 dominated : -14.1 

C3 dominated: -29.8

*13/Figure 14. Histograms, cumulative frequency curves, and prediction grids of 6  Csoc for 
5 study sites. These models show the expected 6 13Csoc trends if the sites were to be 
randomly sampled. There is a significant influence of hydrology on 6 13Csoc values at the 
landscape-scale evaluated.



Table 2. Climate data and woody cover of selected study sites. The climate summaries were calculated from the East African 
Meteorological Department report (1970) and from Barboni et al. (1999) for Awash study site. Water deficit (WD) calculations are 
discussed in the Methods section. The initials NP, GR, and PR refer to National Park, Game Reserve, and Primate Research. The 
areas excluded in woody cover calculations are indicated and explanation provided in the footnotes.

Study Location Climate Station Latitude Longitude Altitude

m

MAT

oC

MAP

mm

RH

%

WD

mm/yr

WC

%

Arabuko Sokoke NP Malindi Airport -3.23 40.01 20 26.1 1096 80 540 97

§Awash Barboni et al., 1999 11.07 40.54 515 30.0 500 ND 1320 13

*Kakamega NP Kitale Met. Station -0.17 35.00 1919 18.2 1191 81 245 77

Ileret Lodwar 3.12 35.62 506 29.2 178 57 1604 23

fNairobi NP Nairobi, Wilson Air. -0.30 36.75 1792 17.6 909 81 540 33

fNakuru NP Nakuru -0.27 36.07 1871 17.4 957 77 451 41

Samburu GR Isiolo 0.35 37.58 1104 23.5 648 62 927 20

§Tana River PR Hola, T ana River -0.48 40.02 44 27.5 475 76 1241 6

{Tsavo West NP Voi -3.40 38.57 560 24.9 549 73 1059 38

Meru NP Garissa Met. Sta. -0.47 34.12 147 28.5 321 45 1254 65

f  Urban areas excluded as well as grasslands falling in a different climate regime from the forest

* Agricultural areas and managed grasslands excluded

§ Riparian corridors excluded because they do not reflect the climate of the site 

{ Area where woody cover classification was confounded poor spectral resolution excluded
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WD (mm/year)

Figure 15. The relationship between water deficit (WD) and woody cover for selected 
sites with relatively accurate woody cover classification. There is a linear relationship, 
suggesting that WD can account for woody cover distribution in the East African Region. 
Sites (Arabuko Sokoke and Shimba Hills) proximal to the Indian Ocean have high woody 
cover due to high relative humidity in addition to high precipitation.



2.3.3 The relationship between net aboveground primary 
productivity patterns and FWC

We used the normalized difference vegetation index (NDVI) from the SPOT VGT 

10S series as an indicator of change in the aboveground net primary productivity (AG- 

NPP) in response to precipitation pulses. AG-NPP is strongly correlated to woody cover 

(Paruelo et al., 1997) and reflects how effective moisture pulses are in driving 

photosynthesis. A 10-day 1 km normalized difference vegetation index (NDVI) from 

SPOT VGT 10S series imagery covering the period between April 1998 and November 

2009 were downloaded (http://free.vgt.vito.be/) and used to statistically evaluate changes 

in AG-NPP. The NDVI images were layer-stacked chronologically, and used to calculate 

the long-term average and standard deviation of NDVI values per pixel.

A spatial correspondence between herbaceous cover and NDVI variations is 

evident by comparing the NDVI response patterns represented by 12-year standard 

deviation of SPOT NDVI series and the MODIS VCF product that models woody and 

herbaceous cover distribution patterns at the subpixel level (Appendix B).

2.4 Discussion

The hypothesis that soil 6 13CSOC values indicate woody cover distribution patterns 

that are influenced by tree local disturbance and moisture availability at patch-scale (< 1 0  

ha) are well supported by the data in this analysis. However, the relationship between 

woody cover and water deficit at landscape-scale is weak and insignificant. The study 

shows that the savanna biome contains enormous diversity in physiognomy and spatial 

structure of the vegetation. Variations in 6 13Csoc are sufficiently characterized and 

modeled using fine-resolution orthoimagery through spatial analysis of clustering
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and dispersion patterns of individual trees and shrubs. Since FWc is related to percent 

abundance of C3 plants in the tropics (Goetz et al., 2003; Wang et al., 2009; Bai et al., 

2009) in contrast to regions where c 3 vegetation also dominates non-ligneous vegetation 

(Magnusson et al., 2002; Still et al., 2003), characterizing the woody cover at landscape- 

scale will aid in establishing factors that cause patch-scale variations in woody cover and 

also in determining how they scale-up. Knowledge of factors that determine woody 

cover is essential in characterizing historical changes in 6 13CSOC from climate and 

disturbance (Bai et al., 2009), and also in providing a context for interpreting 

paleoenvironments (Cerling et al., 2011).

2.4.1 Variations of FWC and 6 13CSOC patterns with water deficit

The broad distribution in woody cover and 6 13CSOC in areas with less than 80% 

woody cover (Figure 13-14) and the poor correlation between woody cover and water 

deficit (Figure 15) indicates that several biomes (forest, savanna, and treeless (barren or 

grassy)) co-exist within each landscape (Appendix B). In Kakamega NP and Shimba 

Hills GR, clear patches of grassland amid closed-canopy forests represent bimodal states 

promoted by frequent burns. Fire acts as a positive feedback that maintains open 

canopies in stable states (Keeley & Rundel, 2005; Hirota et al., 2011; Staver et al., 2011) 

and results in discontinuous woody cover with intermediate rainfall (1000 to 2500 

millimeters) (Hirota et al., 2011; Staver et al., 2011). Edaphic factors may also contribute 

to the observed variations in FWC within landscapes. For instance, Wynn et al. (2006) 

observed that mean vapor pressure deficit and annual flux of water available to plants
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exert a strong influence on woody cover and soil organic carbon 6 13C values in addition 

to soil texture.

It has been argued that fire played a crucial role in the global expansion of 

savanna and C4 grasslands in the Miocene, a period characterized by increased aridity and 

rainfall seasonality (Keeley & Rundel, 2005). According to NDVI response patterns, 

areas with high standard deviations of SPOT NDVI also have greater proportion of 

herbaceous cover areas as per MODIS VCF estimates (Appendix A). This suggests that 

herbaceous plants account for the most significant changes in aboveground primary 

productivity. C4 vegetation that dominates the herbaceous community in Eastern Africa 

(Tieszen et al., 1997) may influence the 6 13CSOC in the Eastern African region according 

to how open the woody cover is.

2.4.2 Variations of 6 13CSOC patterns with hydrology

Hydrology, moderated by landscape geomorphology, influences the woody cover 

within a riparian corridor in proportion to the volume of water flowing through the river 

and the shape of the river channel (straight or meandering). Meandering river systems 

have particularly strong influence on woody cover, as is evident along the Awash, Tana, 

and Samburu rivers (Figure 10) from percolation of water from the river into the 

hyporrheic zone, an effect that may be further enhanced by "hydraulic lift" (Ludwig et al., 

2003). For instance, the riparian corridor along the Tana River is situated on a relatively 

flat floodplain and has a nearly closed-canopy woody cover (74 %), which corresponds to 

a mean 6 13CSOC value of ~ -24.5%o. The distribution patterns of 6 13CSOC values for a 

hectare-scale section of Tana River riparian forest with a woody cover of ~ 84% is
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similar to that of Kakamega Forest (Figure 14) and borders a nonriparian area with a 

woody cover of ~ 28 % that has a mean 6 13Csoc value of ~ -16.6%o. Therefore, riparian 

zones have higher woody cover than nonriparian zones and may skew the distribution of 

FWC and 6 13CSom values towards a riparian zone microclimate rather than reflecting a 

landscape-wide climate regime.

Landscape-scale histograms of 6 13Csoc prediction grids indicate that dry sites 

with low woody cover adjacent to a riparian corridor (with high woody cover) are skewed 

towards the C4 end member (Figure 15; e.g., Tana River and Awash). As woody cover 

increases outside the riparian zone, the 6 13Csoc distribution becomes bimodal and the 

skew in 6 13Csoc distribution shifts from C4 end member (-14%) toward C3 end member 

(-30%) (e.g., Ileret and Nakuru). As the woody cover approaches closed canopy, the 

6 13Csoc becomes skewed towards the C3 end member (-30%) (e.g., Kakamega Forest, 

Arabuko Sokoke, and Shimba Hills).

2.4.3 Relevance of 6 13Csoc patterns in paleoenvironmental 
reconstruction in Eastern Africa

The distribution patterns of 6 13Csoc values provide a way to reconstruct 

vegetation patterns at patch-scale and landscape-scales (Figures 13-14). In this regard, 

skew of the landscape-scale distribution of 6 13Csoc values towards the C3 end member is 

interpreted as resulting from an environment with high woody cover that is closely 

clustered (e.g., Arabuko Sokoke and Kakamega forests) because of climatic effects 

(Figure 14). The histograms of 6 13Csoc values with bimodal peaks close to the center of 

the C3 and C4 end members represent open woodland with sparsely distributed trees and
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shrubs (e.g., Ileret). A strong unimodal distribution of 6 13Csoc values towards a C4 end 

member represents open grassland (e.g., Athi River). Further, the histograms of 6 13CSOC 

values indicate that variations in physiognomy caused by other nonclimatic factors have 

little influence on the structure of 6 13CSOC values histograms. Climate is the dominant 

factor determining the FWC at landscape-scale.

At patch-scale (~1-10 hectare size), skew of 6 13CSOC values towards the C3 end 

member may occur, as is evident within the riparian corridor along the Tana River in a 

region that is otherwise xeric with a woody cover < 10% (Figure 13). These riparian 

areas are thought to have been important to the early hominins for shade, food, and 

shelter. On geological timescales, river systems meander across the entire floodplain, 

even though a unique riparian corridor may comprise only a small fraction of the 

floodplain area.

2.5 Conclusion

We show through models of 6 13CSOC in different vegetation cover types in the 

East African region that fractional woody cover determines the 6 13CSOC values and is 

scale-dependent distribution pattern. In this regard, skew of the distribution of 6 13CSOC 

values towards the C3 end member is interpreted as an environment with high woody 

cover while a unimodal distribution of 6 13CSOC values towards a C4 end member 

represents open grasslands. Existence of multiple biomes within a landscape results in 

multiple 6 13CSOC peaks spanning the transition between C3 and C4 end members and is 

the reason that the water deficit is uncorrelated with FWC. Riparian environments have 

high woody cover associated with river systems, and these can occur in otherwise open
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environments such as grasslands or wooded grasslands. Our models indicate that 

interpreting paleoenvironments from soil organic matter of paleosols in the East African 

region should be done with reference to both local and regional climate and disturbance. 

The distribution patterns of 613CSOC values provide an independent way to reconstruct 

vegetation patterns at landscape scales.
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CHAPTER 3

CHANGES IN NUTRIENT AND CARBON INFLUXES IN 

FOY LAKE, MONTANA BEFORE AND 

AFTER EUROPEAN SETTLEMENTS 

IN FLATHEAD VALLEY

3.1 Background

Materials originating from the watershed linked to either climatic processes such 

as snowmelt (Piatek et al., 2005; Widory et al., 2005; Elliot & Brush, 2006) and fire 

episodes (e.g., Power et al., 2006; Power et al., 2011) or non-climatic process such as 

human activities (e.g., Mayer et al., 2002) may significantly alter biogeochemical 

processes that occur within lakes. For instance, nutrient transported into lakes via rivers 

(Mayer et al., 2002; Gravelle et al., 2009) or atmospheric deposition (Nannus et al., 2003; 

Saros et al., 2003) may potentially alter lake nutrient budgets and trigger changes in lake 

productivity and plankton community composition. Thus, distinguishing the sources of 

materials and their impact on lake ecosystem processes is important in accurately 

reconstructing past environments from sedimentary archives. The use of multiproxy 

approaches advocated by Leavitt et al. (2009) provides a means to account for processes 

linked to climatic and nonclimatic processes in sedimentary archives, thus enabling a 

reconstruction of past environments. Within that framework, influence of ionic balance



(Shapley, 2010), evaporation (Henderson & Shuman, 2009), and particulate fluxes with 

lake bathymetry (e.g., Stone & Fritz, 2004; Stevens et al., 2006; Stone et al., 2005; 

Shuman et al., 2009;) may be integrated in reconstructing climate and disturbance within 

the lake and its watershed in the past.

In reconstructing water balance in groundwater-fed lakes, changes in the 

magnitude and timing of runoff in the mountains are important because climate change 

alters the timing and magnitude of snow pack melt (e.g., Owen et al., 2009). The stable 

isotope composition of lake water (18O and D) reflects the isotopic composition of the 

melt water as do climatic factors including precipitation, relative humidity, and 

temperature (Henderson & Shuman, 2009). When the 18O abundance in lake carbonates 

are used to infer past changes in lake water balance, the influence of photosynthesis 

within the lake, detrital carbonates, and variability in isotopic composition among 

carbonate minerals must be considered (see Leng et al., 2004). Studies show that 

carbonates deposited in sediments of groundwater-fed lakes increases during summer 

photosynthesis (McConnaughey et al., 1994; Drummond et al., 1995) and therefore, 

changes in the photosynthetic activity in the water column are expected to increase 

carbonate precipitation.

The objective of this study is to evaluate the hypothesis that forest clearing elicits 

an influx of nutrients and terrigenous materials that alter carbon cycling in lacustrine 

environments compared to the period before Euro-American settlement (pre-A.D. 1880). 

To evaluate this hypothesis, we use stable isotope and optical methods (charcoal, pollen, 

and diatom counts) to account for nutrient fluxes and particulate matter fluxes in 

sediments of Foy Lake, which is recharged primarily through groundwater. Watershed
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geomorphology, modern land cover/ land use, and lake bathymetry are all considered.

3.2 Study area

Foy Lake, MT, (Figure 16) occupies the edge of the forest-steppe border of the 

Flathead Valley of Northwestern Montana at an altitude of 1006 m surrounded by open 

grassy woodlands comprised of Peudotsuga menziesii, Pinusponderosa, and Larix 

occidentalis, with Pinus contorta scattered throughout (Power et al., 2006). The lake is a 

groundwater outcrop with minimal stream inputs, has a maximum water depth of about 

39.9 m, and a surface area of 110 ha. Sediments in Foy Lake are laminated (Power et al., 

2006; Stevens et al., 2006), making it possible to visualize the variation in sediment 

characteristics through time.

3.3 Material and methods

A 55 cm-long frozen sediment core was obtained in 2006 from the deepest 

portion of the lake and water samples were collected during the summer of 2010. A 2-cm 

wide 55 cm-long section of the Foy Lake core was cut from the freeze core. The 

remainder of the sequence has been archived at the Natural History Museum of Utah. 

Sediment sequences ranging from 5 to 8 cm in length were cut with a razor blade and 

placed on Petri dishes. High-resolution photographs were captured from the cut 

segments of the freeze core whereupon identifiable varves were cut with a razor blade 

from the core starting from the top (sediment-water interface) and placed in a freezer at 4 

oC to allow ice crystals to sublimate and reveal the laminations (see Appendix C). High-
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Figure 16. Location of Foy Lake. Foy Lake is situated in the Rocky Mountains adjacent to the Flathead Valley. The lake has no 
surface inlets or outlets.

59



60

resolution photos were used to determine the optimum sampling protocols for the 

sediments. From each section, samples were obtained by cutting sections of the cores at 

equal intervals along the varves and placed in prelabeled centrifuge tubes.

3.3.1 Isotopic analysis

The stable isotope analysis was carried out in stable isotope laboratories of the 

Biology Department at the University of Utah. An aliquot of about 600-700 mg was 

obtained from sample tubes, transferred into new centrifuge vials, and dried at 60 °C for 

at least 48 hrs. Two aliquots of about 300 mg each were obtained for each sample after 

oven-drying and transferred to new prelabeled centrifuge vials. One of these aliquots was 

treated with dilute hydrochloric acid to remove carbonates and rinsed with distilled water. 

The other 300 mg sample, destined for carbonate analysis, was left untreated.

3.3.1.1 Stable isotope analysis o f organic matter (OM)

The acid-treated aliquots were dried at 60 °C for at least 24 hrs. About 10 to 20 

mg of the samples were weighed and analyzed for carbon-13 and nitrogen-15 abundance 

in the Geochemistry Laboratory of the Biology Department at the University of Utah. 

Yeast of known isotopic composition was used as an internal standard for these analyses. 

The samples were combusted in a Costech 4010 Elemental Analyzer at 1650 °C and inlet 

to a Finnigan® MAT 252 Isotope Ratio Mass Spectrometer (IRMS) in continuous flow 

mode. Isotope values were calculated as shown in Equation 13.

6X (%o) = 1 0 0 0 * ( R sample ^ s ta n d a r d  -1 ) Equation 13



where ‘X  is either 15N, 13C, 18O , or D , while R is 15N /14N, 13C /12C, 18O/16O, or D /H, 

respectively, and 6X is expressed in per mil (%o) relative to internationally agreed 

standards: V-PDB for both organic and carbonate carbon and oxygen, VSMOW for 

oxygen and deuterium in water, and atmosphere (AIR) for nitrogen S15N, respectively. 

Water oxygen and deuterium values are reported relative to the VSMOW standard. 

Carbon and nitrogen yields were determined from the preliminary samples, optimum 

sample sizes established, and samples run in duplicate with newly determined masses. 

The analytical precision of isotopic analysis of 615N SOM, and 613CSOM are 0.1%  and 

0.2%, respectively.

3.3.1.2 d18O and d13C stable isotope analysis o f sedimentary carbonates

The analysis was limited only to the top 5 cm section of the core to increase the 

sample size of isotopic data for comparison with isotopic data of the presettlement period 

(Stevens et al., 2006). The untreated aliquots were sieved through a 140 |im sieve to

18 13
remove coarse debris and analyzed for 6 O and 6 C via continuous flow with a 

GasBench (Thermoscientific Inc.) coupled to a Finnigan MAT 252 IRMS. UU Carrara 

(carbonate) of grain size < 140 |im was used as an internal standard for all analyses. 

About 5 mg of each sediment sample was weighed into 25 ml screw-top vials with septa, 

purged with helium to remove atmospheric gases in the headspace, injected with 

phosphoric acid to evolve carbon dioxide, and left to react overnight at 72 °C. UU 

Carrara (carbonate) was used as an internal standard. The standard deviations (1a) of 

isotope measurements of b13C and 618O were < 0.07 and < 0.02 % , respectively. The 

new dataset was collated with data on the oxygen and carbon-isotopes of the carbonates
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(see Stevens et al., 2006).

3.3.1.3 d18O and 6D stable isotope analysis o f water samples

Water isotope analysis was done in a thermo combustion elemental Analyzer 

(TCEA) linked to a Delta-plus IRMS in the SIRFER Lab, University of Utah. The 

samples were run together with internal standards (PLRM-1, PLRM-2, and SLRM) 

calibrated to VSMOW water. The 6 18O H 2 o  and 6DH2O were calculated as shown in 

Equation 13.

3.3.2 Age chronology

The chronology of the analyzed 55-cm deep Foy Lake core covering the last 350 

years was developed from varves and a series of 210Pb dates (Stevens et al., 2006) (Figure 

17). The chronology was based on a 2nd-order polynomial age model (Table 3).

3.3.3 Estimation of percent land cover / land use in watershed

GAP analysis maps were used to estimate the relative proportions of land around 

the Foy Lake watershed under different land cover types and land uses by reclassifying 

90 m2 land cover pixels (Gap Analysis Project, University of Idaho - 

http://gap.uidaho.edu/index.php/landcover/) downloaded in June 2010. Developed, open 

space, low, medium, and high intensity, pasture/Hay were considered developed, while 

the North American arid west emergent marsh, Rocky Mountain alpine-montane wet 

meadow, lower montane riparian woodland and shrubland; harvested forest-tree 

regeneration, forest-shrub regeneration, forest-grass regeneration; and Northern Rocky

http://gap.uidaho.edu/index.php/landcover/
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Core description
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Figure 17. Age model for Foy Lake, Montana, generated by 2nd -order polynomial 
regression between the modem lake surface (top of mud-water interface) and the 210Pb 
dates taken from terrestrial wood fragments. The sections labeled L, W, and R signify 
finely laminated, nonlaminated, and poorly laminated sediments. The grayscale analysis 
was perfomed on the original core using image J software (http://rsbweb.nih. gov/) and 
shows that the unlaminated section is much lighter in color than the laminated sections.
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Table 3. The age model for Foy Lake freeze core based on 210Pb activity, varve counts, 
and 14C dates of woody material. 210Pb ages were provided by Daniel Engstrom, St. 
Croix Watershed Research Station.
Depth interval_______Age (AD)a Error of age (years) +/- 1 SD Median depth
(cm) Base of interval
0-0.5 1998 3.88- 0.25
3-3.5 1987 4.63- 3.25
5-5.5 1980 4.91- 5.25
8-8.5 1969 4.65- 8.25
9.5-10 1962 5.31- 9.75
12-12.5 1945 7.96- 12.25
13.5-14 1935 9.96- 13.75
15.5-16 1922 14.74- 15.75
18.5-19 1880 54.30 a 18.75

925+/-35 b 83.50
a 210Pb ages provided by Daniel Engstrom, St. Croix Watershed Research Station.

14/-^b C dates from a woody material (Lab ID. No. NSRL-1197) used to constrain bottom age of the freeze 
core age model used to construct using a 2nd-order polynomial. The age range 744-926 Cal. B. P. (2d) 
was calibrated with CALIB 5 using the Stuiver et al. (1998) data set.



Mountain montane-foothill deciduous shrubland; subalpine deciduous shrubland, 

ponderosa pine woodland and savanna, subalpine-montane mesic meadow, subalpine 

deciduous shrubland, dry-mesic montane mixed conifer forest were categorized as 

undeveloped. Open water was excluded from the analysis. The watersheds were 

digitized from 10 m USGS digital elevation models (DEMs). Sections of the land use 

maps outside the regions of interests (watersheds) were masked out using the digitized 

watershed in ENVI 4.7 (ITT VIS Inc.). The percentage land cover / land use was 

calculated as shown in Equation 14:

, , Pixels per land cover class Equation 14 
% Land use per cover class = — n--------------------------------------

Pixels per land cover class

where ‘n’ represents the number of land cover classes in the watershed.

3.3.4 Pollen processing

Sediment samples (lcc  each) were obtained at 1 cm intervals (~ 6 -  7 yr intervals) 

and processed following the methods of Faegri et al. (1989). A Lycopodium tablet was 

added to each sample as an exotic tracer. At least 300 terrestrial grains were counted for 

each sample processed, counts were converted to percentages of the total terrestrial 

grains, and pollen influx rates (grains cm-2 yr-1) were calculated for each pollen taxon 

over the course of the record.
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3.3.5 Charcoal analysis

Macroscopic charcoal (particles >125 |im) were used to reconstruct the fire 

history. One cubic centimeter sediment samples were obtained from the frozen core at 

contiguous one-centimeter depth intervals. The samples were disaggregated with 

potassium hydroxide, washed through a 125 |im sieve, identified, and counted at 36X 

with a dissecting microscope. Fire events were statistically determined by Char 

Analysis© software whereby peaks of charcoal counts above a background level 

constitute fire events. Other identifiable macroscopic plant or animal remains were also 

recorded.

3.3.6 Diatom processing

Diatom samples were cleaned of organic debris and mounted for light microscope 

observations following the techniques outlined in Battarbee (1986). This processing 

approach uses 10% HCl to remove carbonates and cold 30% hydrogen peroxide to 

oxidize organic matter. When possible, 300 to 500 diatom valves were identified and 

counted from each sediment sample.

3.4 Results

3.4.1 Particulate matter fluxes in Foy Lake

The pollen and charcoal influx in Foy Lake indicates an unprecedented influx of 

pollen that triggered changes in phytoplankton composition, increasing the relative 

abundance in benthic and tychoplankton at the expense of true plankton (Figure 18).
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3.4.2 Pollen data

The pollen influx record of Foy Lake reveals a period of heightened pollen influx 

between 1880-1980 (Figure 19). The pollen influx before 1880 was ~15,617 grains per 

year and ~ 89,391 grains per year after 1880 A. D. The dominant pollen in the lake is 

Pinus sp. that accounts for 61% of the pollen influx before 1880 A. D. and ~ 45% after 

1880.

3.4.3 Charcoal records

The charcoal influx data indicate episodic influxes of charcoal in Foy Lake 

(Figure 20). Nine fire episodes were detected, yielding a fire return interval of 25 to 45 

years. Average charcoal accumulation rates (particles cm-2 yr-1) are ~20 for the 

presettlement period, and 152 for the postsettlement period.

3.4.4 Diatom records

The diatom record shows that Cyclotella bodanica var. lemnaica is the dominant 

diatom with a relative abundance of >95% (Figure 21). Cyclotella bodanica var. 

lemnaica is the most common of the true plankton, while Fragillaria, anamoensis, 

Craticula sp., Navicula sp., Gomphonema sp., and Nitzschiapalea constitute the major 

benthic diatoms. The influx of benthic diatoms shows an inverse relationship to the 

influx of true diatoms.
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Figure 19. The pollen influx record of Foy Lake. The pollen influx shows that two episodes of accelerated influxes (1900-1921 and 
1992-2000) coincide with tree harvesting in Foy Lake watershed. Cheno-Ams stands for Chenopodiaceae and Amaranthaceae. 9
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Figure 20. Plot of Foy Lake charcoal records. The char analysis detects 9 fire episodes 
over the past 580 years and a fire return interval in Foy Lake is between 25 to 45 years.
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3.4.5 Stable isotope records of the sediment core

The 615NBOM values in Foy Lake range from 0.5%o to ~8.0%o (Figure 22). In the 

presetttement period (1380 to 1880), the 615NBOM values vary from 0.5% to 3.5%. A 

positive excursion in 615NBOM values of about 2%  associated with establishment of Foy 

Mill (Power et al., 2006) marks the period of European settlement in the Flathead Valley. 

Positive excursions in 615N BOM coincide with negative shifts in 613CBOM values with the 

most significant change occurring in 1870 (from -25% to -28%) at the time when Foy 

Mill was established. A positive shift in C:N ratios from 10.5 to ~ 17 also occurs at the 

same time. From ~ 1900, a negative shift in 615N BOM values and a decrease in C:N ratios 

occurs with one notable exception in 1935, when a large excursion in 615NBOM values 

(from ~3%  to ~8% ) occurs that coincides with a decrease in C:N ratios from 10.5 to 8. 

There is a strong relationship between 613CCaCO3 and 618OCaCO3 between the top section of 

Foy Lake and the bottom section of the lake (Figure 23).

3.5 Discussion

Historical timber harvesting has had a significant impact on both sediment and 

nutrient influx into Foy Lake. The 613C and 615N values of bulk organic matter (hereafter 

613CBOM and 615NBOM, respectively), C:N ratios, and pollen and charcoal influxes provide 

clues on the source of materials getting into Foy Lake while diatom records indicate the 

impact of those materials on phytoplankton community dynamics and other ecosystem

13 18 13 18processes. The lake carbonates 6 C and 6 O values (hereafter 6 CCaCO3 and 6 OCaCO3, 

respectively) provide clues about lake water balance, and provide an understanding of the
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shifts in carbon cycling through water and nutrient budgets in Foy Lake before and after 

European settlement.

3.5.1 Effects of lake water balance on 613CCaCO3 and 618OCacO3

Inferring past water balance from oxygen and carbon stable isotopes values based 

exclusively on the analysis of carbonates in lake sediments may lead to erroneous 

interpretations because there are numerous factors that cause 618OCaCO3 and 618OCaCO3 to

vary within one lake. The study demonstrates that a multiproxy approach provides a 

holistic method for reconstructing past hydrological variations where nutrient and 

particulate material fluxes into the lake are accounted for. The historical precipitation 

records around Foy Lake indicate a significant decline in precipitation ~ 1980 A.D. 

(Appendix C) although the shift in 613CCaCO3 and 618OCaCO3 composition occurred ~ 1890

A. D. (Figure 22). The nutrients washed down from the watershed as well as 

resuspended sediments from the shallow sections of the lake may provide clues on the 

coeval processes associated with shifts in 613CCaCO3 and 618OCaCO3.

Original analysis of the 618OCaCO3 (Stevens et al., 2006) in Foy Lake attributed the

depletion in 18O to change in water residence time after a shallow outlet on the northern 

end of the lake that operates intermittently during spring runoff, and was believed to have 

been modified in the late 1800s to power the Foy lumber mill. The shift in 618OCaCO3 of

~2%o around 1890 A.D. is attributed to changes in water residence time (Stevens et al., 

2006) in Foy lake. These observations are consistent with numerical simulations by 

Shapely et al. (2008) based on mass-balance models that show that under the same



precipitation and evaporation scenario, 618OCaCO3 values may vary significantly because

of the contribution of groundwater from aquifers relative to precipitation. Under high 

groundwater fluxes and/or low lake volume, low lake fluid residence time dampens the 

amplitude of 618OCaCO3 variation from climatic variability (Shapely et al., 2008).

Consequently, lake 618OCaCO3 values reflect changes in precipitation, evaporation, as well 

as groundwater contribution to the lake water balance. The 618OCaCO3 changes expected 

from climate forcing may be therefore hard to predict because of variations in 

groundwater-lake exchange and associated changes in lake residence time, and 618Oh2O 

values of inflowing water and evaporative 18O enrichment.

While the shift in 618OCaCO3 of ~2%  around 1890 A.D. is attributed to changes in

water residence time (Stevens et al., 2006) in the lake, the shifts in 613CCaCO3 are more

complicated to interpret. For instance, Myrbo and Shapley (2006) demonstrate that 613C 

values of dissolved inorganic carbon (613CDIC) in six carbonate-precipitating temperate 

lakes in Montana and Minnesota vary between epilimnetic waters and hypolimnetic 

waters. There are idiosyncrasies in 613CDIC trends with dissolved inorganic carbon (DIC) 

content in individual lake water columns that may not be readily explained in terms of 

lake stratification, algal productivity, hydraulic residence time, or water chemistry 

(Myrbo & Shapley, 2006). Relating the magnitude of distinct DIC pools to carbonate 

mineral equilibria, microbial activity, lake residence time, and material fluxes in stratified 

lakes provide more predictable 613CDIC behavior. Myrbo and Shapley (2006) identify 

three relationships of 613CDIC values between DIC concentration ([DIC]) that exist in 

groundwater-fed lakes; (1) 613CDIC values decreasing with increasing [DIC], (2) 613CDIC
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values increasing with increasing [DIC], and (3) 613CDIC values decreasing with 

increasing [DIC] but increasing again at the highest [DIC]. The variations in 613CCaCO3

are therefore variously attributed to the magnitude of carbonate fluxes from the 

epilimnion to hypolimnion, carbonate dissolution kinetics in the water column, and 

microbial-mediated carbon cycling in the hypolimnion (e.g., Acetotrophic 

methanogenesis) (Myrbo & Shapley, 2006). The 613CCaCO3 variations are therefore a 

function of physical-chemical gradients and microbial processes within the lake, while 

the 618OCaCO3 values reflect changes in water residence.

Bicarbonates (HCO3-) and magnesium ions (Mg2+) have a significant influence on 

magnesium to calcium ratios in groundwater-fed Lakes like Foy Lake (Shapley et al.,

2010). Several groundwater springs suggests that the aquifers around the lake are rich in 

HCO3- and Mg2+ (LaFave, 2000). Therefore, the water derived from Foy Lake is rich in 

magnesium ions, as is evident from the presence of low magnesium calcite in the lake 

(Appendix C). The magnesium ions inhibit calcium carbonate nucleation with the crystal 

formation of calcium carbonate forming pure calcium carbonate (e.g., Meister et al.,

2011). The presence of low magnesium calcite in the sediments is an indication of a high 

magnesium ion concentration in the lake water whose precipitation conforms to the 

summer calcification mediated by phytoplankton communities (Appendix C). As such, 

Foy Lake fits the description of a marl lake, characterized as having almost pure (90%- 

95%) low magnesium calcite, with no significant fluvial inflow-outflow system (sensu 

Drummond et al., 1995).

The influence of material fluxes on carbonate precipitation is best illustrated by 

the differences in correlation between 613CCaCO3 and 618QCaCO3 before and after the
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European settlement of the Foy Lake watershed (Figure 23). Within the postsettlement 

section, 1880 through present, there is a strong positive correlation in 613CCaCO3 and 

618OCaCO3 values (R2= 0.7) while the bottom section shows no correlation (R2= 0.1).

Such positive correlations have been observed in small lakes where the contribution of 

autochthonous carbonates, especially during periods of high sedimentation rates, is 

significant (Horvatini et al., 2008). The relatively small surface area to volume ratio of 

Foy Lake (~0.03) makes the lake’s 613CCaCO3 and 618OCaCO3 particularly sensitive to the 

influence of autochthonous carbonates.

3.5.2 Organic matter 615NbOm, 613CBOM, and C:N ratios 
evidence of material fluxes in Foy Lake

Groundwater-fed lakes like Foy Lake that primarily receive most of their water 

from spring snowmelt are likely to receive nutrients mainly leached from the watersheds 

(e.g., Campbell et al., 2002; McHale et al., 2002). However, nitrates washed in from 

runoff from watersheds having agricultural and urban settlements are generally more 

enriched in 15N than nutrients arising from mineralization of organic nitrogen (Burns & 

Kendall, 2002; Mayer et al., 2002). Although our estimates based on GAP analysis maps 

shows only ~ 7.6% of the watershed has been developed (Appendix C), the reduced 

woody cover and increase in other forms of anthropogenic disturbance around Foy Lake 

led to the development of its eutrophic status, as is evident in C:N ratios and 615NBOM 

values.

During the presettlement period, pulses of leached nitrates flushed from soils in 

the watershed may have gotten into the lake via basal flow during the spring snowmelt or 

surface runoff. Forest clearing during the late 19th and early 20th centuries resulted in an
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influx of nutrients through surface water runoff, an observation that has been made from 

other watersheds in northern Idaho (Gravelle et al., 2009). Along with enhanced nutrient 

fluxes into lakes, particulate matter (e.g., pollen and diatoms) fluxes also increase during 

and after the tree logging.

The influx of woody pulp following the establishment of Foy Mill in Foy Lake 

watershed is evident in 613CBOM values and C:N ratios. During the presettlement period, 

the C:N ratios average ~ 12.5 (Figure 22) while 613CBOM values average ~ -25% with 

modest variations. However, tree logging operations led to an influx of woody material 

that increased the C:N ratios by as much as 29 with concomitant negative excursions in 

613CBOM values to as low as ~-30%. The postsettlement period exhibits a shift in C:N 

ratios and 613CBOM values of greater than 1 and 0.5%, respectively (Figure 22).

The influx of woody debris from fire episodes causes slight enrichments in 

615NBOM values (< 3% ) (Figure 22). During the presettlement period, the 615NBOM values 

generally show a more delayed response to material fluxes, suggesting the system was 

resilient to variability in material fluxes prior to European settlement. For instance, after 

an influx of materials (based on charcoal records) in 1420 A. D., the 615N BOM values 

increase slowly, reaching a peak in ~1520, and then decreases thereafter. However, 

timber harvesting elicits large and more rapid response in material fluxes, as is evident 

from large positive excursions in 615NBOM values (Figure 22). The presettlement 615N BOM 

values in Foy Lake vary between ~1 to ~3.5% but an isotopic enrichment of ~ 3%  occurs 

following the logging operation in 1880s A.D. The poor correlation between %N and 

615NBOM in Foy Lake and the 615NBOM trends through time indicate intermittent nitrogen 

influxes into Foy Lake (Appendix C).
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Bivariate scatterplots of C:N ratios and 613CBOM indicate that Foy Lake organic 

matter is derived from both algal and C3 plants based on Meyers and Lallier-Verges’ 

(1999) model (Appendix C). Prior to deforestation of Foy Lake watershed, conifer 

species, including Pinusponderosa, Larix occidentalis, and Pseudotsuga menziesii, 

known for their prolific production of aerially transported pollen, were major contributors 

of terrigenous organic matter input into the lake (Figure 19). The decline in woody cover 

after Euro-American settlement reduced their contribution to sedimentary organic matter, 

resulting in the observed decrease in C:N ratios (Figure 22). In addition, enhanced influx 

of fine particulates, including silts and clay, into Foy Lake during erosion events 

triggered by disturbances caused resuspension of sediments from shallow sections of the 

lake and redeposition of the same into deep sections of the lake (Stone & Fritz, 2004).

The postlogging period is also marked by enhanced accumulation of quartz in sediments 

(Stevens et al., 2006). Therefore, the observed negative shift in C:N ratios (~2.5) and 

613CBOM values (-1 .5% ) was a consequence of reduced influx of woody materials as well 

as the enhanced influx of tychoplankton and benthic diatoms into lake sediments (Figure 

18-22).

Within the last -500 years, the diatom community in Foy Lake reflect material 

influx from the shallow sections of the lake to deeper sections of the lake consistent with 

the planktic:benthic ratios model of Stone and Fritz (2004). However, geochemical data 

suggest that the relationship between the changes in planktic:benthic ratios and water 

depth may be not just a function of changes in lake water level but also disturbance. For 

instance, the increase in planktic:benthic ratio between 1580 to 1640 A.D. coincide with 

negative shifts in organic carbon content (%C) and a significant positive excursion in
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615NBOM values (Figure 21-22) and positive shifts in 613CCaCO3 values. In contrast, the 

increase in benthic:planktonic ratio values between 1670 and 1710 A. D. (Figure 21) 

coincides with a significant negative shift in 613CBOM, a positive shift in C:N ratio, and a 

less significant shift in 615NBOM values (Figure 22). These data suggest that organic 

material fluxes from the watershed (terrigenous) and benthic environments 

(autochthonous) vary in magnitude throughout the study periods and these materials 

differ in C:N ratios, 615NBOM, and 613CBOM values (Figure 22).

During the postsettlement period (after 1890 A.D.), the significant negative 

excursion in 613CBOM values that coincides with an equally significant positive excursion 

in 615N BOM values and C:N ratios (Figure 22) is also marked by an increased influx of 

certain species of benthic plankton, particularly members of the genera Gomphonema, 

Nitzschia, Navicula, and Craticula sp. (Figure 21). In addition, the significant increase in 

relative abundance of tychoplankton in 1890 A.D. (Figure 18) signifies the onset of 

disturbance within Foy Lake. Tychoplanktons have their true habitat in the benthos but 

can be found resuspended in the water column and are especially common in lakes where 

benthic diatoms are especially abundant and easily detached and resuspended into the 

water column (Smol et al., 2001). Therefore, the postsettlement influx of the benthic and 

tychoplanktons is largely a consequence of disturbance in the watershed and stirring up 

of sediments in the upper section of the lake, as opposed to modification of the outlet in 

the northern section of the lake as was earlier thought (Stevens et al., 2006). The 

significant positive correlation between 613CCaCO3 and 618OCaCO3 in the postsettlement 

period is therefore a consequence of a mixture between authigenic and detrital carbonates 

in the Lake (Figure 23).
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3.5.3 The charcoal influx and fire history

The large positive shift in C:N ratios of -10  observed between 1610 and 1650 is 

accompanied by an increase in the charcoal influx by -  5 particles cm-2 yr-1. Similarly, 

the large positive shifts in C:N ratios at the beginning of tree logging is accompanied by 

an increase in charcoal influx of -  5 particles cm-2 yr-1. Changes in charcoal influx 

suggest that positive excursions in C:N ratios arise from an influx of terrigenous organic 

matter. However, charcoal influx does not exclusively account for the positive shifts in 

C:N ratios, since the high peaks in C:N ratios (e.g., between 1750-1800) are not always 

accompanied by significant charcoal influxes (Figure 20, 22). During the predisturbance 

period, the C:N ratios are constant during certain periods and variable in other periods, 

suggesting that material influxes into Foy Lake are intermittent. The trends in 615N BOM 

values also suggest that nutrient fluxes in Foy Lake occur in pulses.

3.5.4 The impact of cultural eutrophication of carbon cycling

Stevens et al. (2006) report that beginning in 1890 A.D., there is an increase in 

quartz, calcite, total inorganic carbon (TIC), a decrease in total organic carbon, and an 

increase followed by a decrease in C:N ratios of organic matter. Results of organic 

matter analysis in this study corroborate these findings (Figure 22). The increase in 

615NBOM values at the beginning of the tree logging operation (1880 A.D.) suggests an 

influx of terrigenous materials. The decrease in organic carbon (% C) after cessation of 

timber harvesting also indicates an increases influx of inorganic materials in Foy Lake. 

The shift from high to low C:N ratios of the organic matter (this study) and a 

corresponding increase in calcite content following deforestation (Stone et al., 2005;
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Stevens et al., 2006) is an indication of an increase in productivity from heightened 

nutrients influx and an increase in algal-derived organic matter of low C:N ratio mainly 

from benthic origin. This study illustrates the need to account for nutrient and particulate 

matter fluxes within and around the lake when reconstructing past environments from 

lake sediment records (Appendix C).

3.6 Conclusion

This study evaluated the hypothesis that forest clearing elicits an unprecedented 

influx of nutrients and terrigenous materials that alter carbon cycling in lake 

environments compared to the period before Euro-American settlement (pre-A.D. 1880). 

The stable isotope and palynomorphic data (charcoal, pollen, and diatom counts) indicate 

an unprecedented influx of nutrients and particulate matter in lake sediments. Watershed 

geomorphology, tree harvesting, and lake bathymetry all contribute to the changes in 

influx of materials into the lake. Changes in woody cover following tree harvesting 

altered the material fluxes into the lake and are manifested as shifts in elemental 

stoichoimetry (C:N ratios), inorganic materials (e.g., carbonates), and organic materials 

(e.g., diatoms, pollen). Shifts in 613CCaCO3 and 618OCaCO3 values are most likely driven by 

enhanced algal productivity and influx of resuspended sediments from terrigenous 

sources and sediment focusing within the lake, as illustrated by a material flux conceptual 

model (Appendix C). Consequently, the sources of materials should be documented 

when reconstructing paleoenvironments.
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CHAPTER 4

DISTURBANCE AND HYDROLOGICAL HISTORY OF UTAH 

LAKE, UT: ISOTOPIC, POLLEN, AND CHARCOAL 

RECORDS OF MATERIAL FLUXES 

AND WATER BALANCE

4.1 Introduction

Anthropogenic disturbances can impact lake biogeochemical processes 

significantly and may mask climatic signals embedded in lake sediment records (e.g., 

Rosen et al., 2000). Such ecological disturbances have been referred to as “information 

filters” (sensu Leavitt et al., 2009) since they complicate the interpretation of the climatic 

signals. Leavitt et al. (2009) propose a process-oriented approach where energy and 

material fluxes are accounted for. In accounting for biogeochemical processes imprinted 

in lake sediments from disturbance and climate, integrating several paleoecological 

methods may yield more accurate results.

Isotopic information gleaned from lake sediments is invaluable in accounting for 

biogeochemical processes induced by natural and anthropogenic activities. For instance, 

15N abundance is a reliable indicator of disturbance that can be used to estimate influence 

of agricultural and urban disturbance in watersheds (Elliot & Brush 2006; Mayer et al., 

2009). Corroborating such isotopic imprints with palynomorphic records (e.g., spores
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and pollen) and charcoal may constrain the interpretation of sedimentary records and 

hence provide analogues for interpreting past climate and land use change within 

watersheds.

In this study, we combine palynomorphic (charcoal, pollen, and macrofossil), 

elemental, isotopic analysis, and loss on ignition analysis of bulk sediments to decipher 

the influence of anthropogenic activities in and around Utah Lake, UT. The size and 

geomorphology of the lake, hydrology, and land use history of its watershed are 

considered. This study is not only important for understanding factors that have altered 

the lake ecosystem in the past, but it also provides background information for restoring 

the lake and its threatened native biodiversity (e.g., Kaperman et al., 2010).

4.2 Study area

Utah Lake, UT, is surrounded by farmlands and urban centers and is bordered by 

the Wasatch Range to the east, the Traverse Range to the north, and the Lake Mountains 

to the west (Figure 24). The lake is fed by both spring and stream water with Provo, 

Spanish Fork, American Fork, and Hobble Creek constituting the main rivers. The 

dominant land cover types include invasive perennial grasslands (14.3%), crop fields 

(14.4%), intermountain basin sagebrush steppe (10.7%), Gambel oak mixed montane 

shrubland (21%), and other plant communities (see Appendix D). The lake is 35.4 km 

long, 16.1 km wide, and extremely shallow, having an average depth of 2.4 m and a 

maximum of 4 m.
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Figure 24. Map of Utah Lake and its watershed. The lake is fed by Provo River (1), Spanish Fork (2), Hobble Creek (3), 
Spring Creek (4), and American Fork (5). Jordan River (6) as the only outlet.
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4.3 Methods

A 43 cm freeze core was recovered from sediments in the center of Utah Lake in 

September 2009. The upper 23 cm of the core are medium to dark-gray silty clay that is 

poorly compacted, and high in water content. Below 23 cm, the sediment grades into 

more compact light to medium to gray clay that extends to a depth of 43 cm. The core 

was kept frozen and transported back to a laboratory in the Natural History Museum of 

Utah for analysis. High-resolution photos were taken to determine the optimum sampling 

protocols for the sediments whereupon subsamples were obtained for isotope, loss on 

ignition, pollen, and charcoal analyses at 0.5 cm intervals from the bottom. The samples 

were placed in prelabeled centrifuge tubes.

Water samples were collected in June 2010 from three locations in the lake at 

about 1 meter deep. The screw top of the sample bottle was reinforced with parafilm to 

prevent water loss due to evaporation. The samples were placed in a cooler, transported 

to the lab, and kept below 4 °C until analyzed.

4.3.1 Isotope analysis

The stable isotope analysis was carried out in stable isotope laboratories of the 

Biology Department at the University of Utah. Forty-three sediment samples at 

centimeter spacing were obtained for the analysis. An aliquot of about 600-700 mg was 

transferred into new centrifuge vials, and put into an oven to dry for at least 48 hrs at 60 

°C. Two subsamples of about 300 mg each were obtained from the oven-dried samples 

and transferred to new prelabeled centrifuge vials. The other 300 mg sample, destined for 

carbonate analysis, was left untreated.
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4.3.1.1 Stable isotope analysis of OM

Sediment samples were treated with dilute hydrochloric acid to remove 

carbonates, rinsed with distilled water, and then oven-dried at 60 °C for at least 24 hrs. 10 

to 20 milligrams of the samples were weighed into 4 mm x 6 mm compressed tin 

capsules (Costech Inc.), and analyzed for stable isotopes of carbon (13C) organic and 

nitrogen (15N) in stable isotope laboratories in the Biology Department, University of 

Utah. Yeast of known isotopic composition was used as an internal standard for these 

analyses. The samples were combusted in a Costech 4010 Elemental Analyzer at 1650 

°C and inlet to a Finnigan® MAT 252 Isotope Ratio Mass Spectrometer (IRMS) in 

continuous flow mode. Isotope values were calculated as shown in Equation 13.
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6X (%o) = 1 0 0 0 * ( R sample / R standard -1 ) Equation 15

where ‘X  is either 15N or 13C, R is 15N /14N, or 13C /12C, respectively, and bX is expressed 

in permil (% ) relative to internationally agreed standards: V-PDB for both carbon and 

oxygen, and atmosphere (AIR) for nitrogen S15N, respectively. Water oxygen and 

deuterium values are reported relative to VSMOW standard. Carbon and nitrogen yields 

were determined from preliminary, optimum sample sizes established, and run in 

duplicate.



4.3.1.2 Stable isotope analysis of sedimentary carbonate

The untreated aliquots were sieved through a 140 |im sieve to remove coarse

18 13
debris and were analyzed for 6 O and 6 C via continuous flow with a GasBench 

(Thermoscientific Inc.) coupled to a Finnigan MAT 252 IRMS. UU Carrara (carbonate) 

of grain size < 140 |im was used as an internal standard for all analyses. About 5 mg of 

each sediment sample was weighed into 25 ml screw-top vials with septa, purged with 

helium to remove atmospheric gases in the headspace, injected with phosphoric acid to 

evolve carbon dioxide, and left to react overnight at 72 °C. UU Carrara (carbonate) was 

used as an internal standard. The standard deviations (1a) of isotope measurements of 

613C and 618O were < 0.07 and < 0.02 %o, respectively. All isotope values were 

calculated as shown in Equation 13.

4.3.1.3 Stable isotope analysis of water samples

Water isotope analysis was done in a high temperature combustion elemental 

analyzer (TCEA) in the Stable Isotope Research Facility for Environmental Research

(SIRFER) Lab, University of Utah. The samples were run together with internal

18
standards (PLRM-1, PLRM-2, and SLRM) calibrated to VSMOW water. 6 OH2O and 6D 

were calculated as shown in Equation 13.

4.3.2 210Pb dating of sediments

210Pb-based dating was considered appropriate for dating the Utah Lake sediment 

core spanning the last 130-150 years (Last & Smol, 2001) based on the assumption that 

unsupported 210Pb activity diminishes continuously and after 6-8 half lives (half-life
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~22.3 yrs), the activity is comparable to background. Samples were counted for 210Pb 

activity at Brigham Young University (BYU) by alpha spectrometry of 210Po assumed to 

be in secular equilibrium with 210Pb. In brief, samples were decalcified with weak HCl, 

dried, and spiked with 210Po. Samples were then digested in Teflon beakers on a hot plate 

with aqua regia at temperatures <90 °C. After drying, samples were taken up in 0.1M 

HCl and filtered. Po-bearing solutions were treated with hydroxylamine to chelate Po, 

and sodium citrate and ascorbic acid to keep the iron in the ferrous state. Silver discs 

were added to the solution where Po spontaneously implants into the silver disc.

4.3.3 Loss on ignition (LOI) analysis

Sediment samples were collected at each centimeter interval starting at the top of 

the freeze core and a gram weighed into porcelain vials and placed in an oven at 70 °C 

for 48 hrs to remove water. Following this, the samples were reweighed, placed in a 

muffle furnace heated to 550 °C for two hours, after which the samples were reweighed 

to determine the organic content. The samples were then returned to the muffle furnace 

at 950 °C for two hours and again reweighed to determine the carbonate content.

4.3.4 Estimation of percent land cover / land use in watershed

A GAP analysis map for southwestern US (Lowry et al., 2007) generated from 

landsat imagery collected between 1999 and 2001 was used to estimate the proportion of 

land under different land cover and land use within the Utah Lake Watershed. The 

Rocky Mountain subalpine dry and mesic meadow, aspen forest and woodland, montane 

mesic mixed conifer and woodland, alpine bedrock and scree, lodgepole pine forest;
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Colorado Plateau pinyon juniper woodland; Great Basin pinyon juniper woodland; and 

Intermountain big sagebrush shrubland, montane big sagebrush steppe, invasive annual 

grassland, and basin playa were categorized as undeveloped. The developed areas 

included the developed open space - low and high intensity (categorized as urban), and 

agricultural land. Water category was excluded in the analysis. The watersheds were 

digitized from 10 m USGS digital elevation models (DEMs). Sections of the land use 

maps outside the regions of interests (watersheds) were masked out using the digitized 

watershed in ENVI 4.7 (ITT VIS Inc.). The percentage land cover / land use was 

calculated as shown in Equation 16:

, , Pixels per land cover class Equation 16
% Land use per cover class = — n--------------------------------------

^ ^ e l s  Per land cover class

where ‘n’ represents the number of land cover classes in the watershed.

4.3.5 Pollen processing

Sediment samples (1cc each) were obtained at 1 cm intervals (~ 6-7 yr intervals) 

and processed following the methods of Faegri et al. (1989). A Lycopodium tablet was 

added to each sample as an exotic tracer. At least 300 terrestrial grains were counted for 

each sample processed. Counts were converted to percentages of the total terrestrial 

grains, and pollen influx rates (grains/cm2/ yr) were calculated for each pollen taxon over 

the course of the record.



4.3.6 Charcoal analysis

Macroscopic charcoal was used to reconstruct fire history and fire frequency. A 

cubic centimeter sediment sample was obtained from the freeze core at one-centimeter 

sediment depth intervals. The samples were disaggregated with potassium hydroxide, 

washed through a 150 |im sieve, identified, and counted with a dissecting microscope. 

Charcoal values were converted to concentration (particles cm-2) and used to estimate 

sediment influx from historical brush burning in the watershed.

4.4 Results

4.4.1 210Pbex activity profile, magnetic susceptibility, 
loss on ignition, charcoal counts with sediment depth

210 210 Examining the plot of sediment depth versus Pb activity, it is evident that Pb

activity levels off at 24.5 cm (Figure 25). Therefore, 210Pb activity below that depth is

considered supported by radioactive decay of 226Ra (half-life 1600 yrs) already present in

210 222 the sediments (Figure 25). The unsupported Pb activity from sedimentation of Rn

daughter product (210Pbex) appears above 24.5 cm depth, and varies unpredictably with

depth. The magnetic susceptibility, 615NBOM values, and charcoal particles (>150 |im)

count increase concordantly by ~10 SI units, -3 .0% , and ~ 40 particles per cc.,

respectively, from 25 cm to 20 cm depth, while LOI values at 550 °C decrease by ~ 1%

for the same interval.
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Figure 2 5 .  The 210Pbex activity, magnetic susceptibility, 6 15N s o m  values, charcoal counts, LOI at 5 5 0  °C, and LOI at 9 5 0  °C of 
Utah Lake sediments with depth.
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4.4.2 S 13C so m  and C:N ratios records with depth

C:N ratios below 28 cm vary between 9.5 and 10.5 (Figure 26). Above 28 cm 

depth, the C:N ratio decreases steadily from 9 to ~8 with the exception of two major 

excursions at 21 cm (C:N ratio ~12.5) and 14 cm (C:N ratio ~16). The variations in 

6 13C b OM values are modest, ranging from ~ -26.5% to -28%. There, 6 13C b OM values 

decrease steadily from ~- 26.5% at 28 cm to ~28.0% at 17.5 cm and then increase 

steadily to ~26.5% at 11 cm depth. The % C increase steadily from ~2% at 26 cm to ~ 

3.5% at 11 cm depth.

4.4.3 Pollen records

The pollen abundance records of Utah Lake indicate that nonarboreal pollen 

dominates the vegetation around the lake (Figure 27). Other dominant taxa include 

members of the goosefoot/amaranth family (ChenopodiumlAmaranthus labeled 

“Cheno/Ams”), sagebrush (Artemisia), and sedge family (Cyperaceae), which are the 

most abundant nonarboreal pollen in the lake while Juniper and Pinaceae dominate 

arboreal pollen. Results of cluster analysis of pollen record suggest four major zones: 

the pre-settlement zone (below 28 cm depth), transition (between 23 and 28 cm depth), 

settlement zone (between 16 and 23 cm depth), postsettlement (between 8 and 16 cm 

depth), and recent (above 8 cm depth). Change in the relative abundance of grass pollen 

is most significant in the postsettlement period.
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Figure 2 6 .  The % C , C : N  ratios, and 6 13C so m  values of Utah Lake sediments with depth.



Figure 27. The relative abundance pollen record of Utah Lake. The label Cheno/Ams denotes members of Chenopodium and 
Amaranthus pollen. Poaceae, Cheno/Am, Juniper, and Cyperaceae are the most abundant pollen types in this lake.



Figure 27. Continued
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4.4.4 Stable isotope records

Bivariate scatterplots of 615Nbom and nitrogen content (%N) show a strong 

positive correlation in Utah Lake (R2~0.8) (Figure 28). The waters of Utah Lake are 

more enriched in deuterium (D) and 18O than the source water (Figure 29). The 613CcacO3 

values of Utah Lake range from -1 to -1.3%o. The 618OCaCO3 values range from -10 to 

-9.5%o. Evaluation of the lake evaporation lines (LEL) against the global meteoric water 

line (GMWL) reveals that S18Oh20 and SDH2O values of source precipitation in Utah are 

-16.5% and -121%, similar to those of Provo River. However, Jordan River, which 

originates from Utah Lake, has more depleted S18OH2O and SDH2O values than Utah Lake.

4.5 Discussion

Pollen, charcoal, isotopic, and loss on ignition records reveal that historically, 

human disturbance has played a dominant role in geochemical transforming of Utah 

Lake, mainly through cultural eutrophication. The disturbance triggers an influx of 

nutrients, causing algal blooms that mask climatic signals in the sediments through 

changes in primary productivity. We discuss how cultural eutrophication manifests itself 

in sediments in reference to the sedimentation based on 210Pb age model, changes in 

stable isotope compositions, pollen and charcoal influx, and loss on ignition data.

4.5.1 210Pb radiometric profile

Previous attempts to estimate the sedimentation rate in Utah Lake show varying 

results (e.g., 13.8 mm/year; Bushman, 1980, 1 mm/yr; Brimhall & Merritt, 1981;

Wiggins & Assay, 2010). The 210Pb activity still presents challenges while estimating the
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Figure 28. Utah Lake organic nitrogen exhibits a significant correlation between 6 15N b o m  

and nitrogen content ( % N ) .  This trend indicates an influx of 15N-enriched nutrients into 
Utah Lake from allochnthonous sources.
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sedimentation rates in Utah Lake, judging by the unpredictable trend in 210Pb activity 

(Figure 25). The 210Pb activity is generally low and is typical of desert lakes that have 

very low atmospheric 210Pb fallout (Appleby, 2008).

Considering the many factors, including the atmospheric flux, the rate of transport 

from the catchment, the water residence time, the fraction of the radionuclide attached to

settling particles, the mean particle settling velocity, and postdepositional transport

210 210processes (Appleby, 2008), we discuss the unsupported Pb activity ( Pbex) profile in 

corroboration with other geochemical and palynormophic data.

It is expected that the unsupported 210Pbex that has a half-life of 22.3 years would 

provide an age chronology based on the assumption that depth is connected to time, t by 

x = vt, where ‘v ’ is the sediment accumulation rate (Equation 15-16; Carrol & Leche, 

2003):

P(t) = P0 exp(-kx) Equation 17

where kx is the least-square fitting of the data and k can be used to estimate the sediment 

accumulation rate v as:

v = ln(2) (kT12) Equation 18

The constant rate of supply model (CRS), which assumes a constant rate of supply of 

fallout 210Pbex (von Gunten et al., 2009) may not be an appropriate assumption for
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determining the age chronology of Utah Lake sediment core in the postsettlement period. 

The concordant increase in 210Pbex, magnetic susceptibility, 615NBOM values, and charcoal 

counts suggest that processes influencing the changes in magnetic susceptibility also alter 

210Pbex activity and imply that 210Pbex is variable. The fallout of 210Pbex occurs through 

dry and wet deposition onto soils, outcrop rocks, surface waters, and glaciers (Bierman et 

al., 1998). The changes in 210Pbex influx may possibly arise from extent, stability, and

erosion regime of the catchment soil cover (Bierman et al., 1998). If transport from the

210 210 catchment is a significant source of Pbex variability in sediments, then the Pbex may

reflect changes in lake hydrology in response to extreme weather events such as

prolonged droughts and anormalous precipitation events, influencing the supply of 210Pbex

to Utah Lake. The large watershed area of the lake (~4,800 km2) relative to the lake area

(~ 500 km2), and a shallow lake water depth (<4 m at the deepest point) provides a large

area where 210Pbex may be sourced and washed into the lake during extreme weather and

hence increase the 210Pbex activity in Utah Lake sediments. Other processes within the

lake that include resuspension of sediments through bioturbation, physical mixing, and

scouring and sediment focusing by wave action may also result in changes in 210Pbex

activity in Utah Lake sediments.

Pending radiocarbon dates, we assign the arrival date for European settlement in 

Utah Valley (1847 A.D.) to correspond to 24.5 cm depth in sediments where the 210Pbex 

activity levels off and magnetic susceptibility increases, as well as S15N som values and 

charcoal influx. The decrease in organic matter from this time indicates an increase in 

sediment influx. The sediment influx associated with European settlement has 

implications on the bulk organic matter composition as elucidated by organic carbon
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content (%C), S13Csom values, and C:N ratios in the lake sediments.

4.5.2 S15N som evidence of agricultural and urban development

Previous studies in 16 watersheds of the eastern USA indicate that S15N values of 

nitrates for watersheds with limited land uses range from 3.5 to 5.5%, whereas 

watersheds with greater than 15% agricultural or urban land use range from 6 to 9%  

(Mayer et al., 2002). The top (~25 cm) sediment 615NBOM values are comparable to those 

reported by Mayer et al. (2002) for watersheds with greater than 15% agricultural or 

urban land use (i.e., 6 to 9%). Estimates based on GAP analysis maps indicate that about 

13% of the Utah Lake watershed is under agriculture and about 5.2% developed (roads 

and houses). Farming and grazing constitute the significant land use in the lake 

watershed (Squires & Rushforth, 1972).

The strong correlation between %N and 615NBOM and ~ 3.0% enrichment in 

615NBOM values between the bottom (5.0%) and the top (8.0%) of the Utah Lake 

sediment core indicates that influx of 15N-enriched nutrients increases the primary 

productivity within Utah Lake (Figure 25). The S15N som values increase is likely due to 

the increasing input of isotopically heavy sewage carried into the lake. Based on 

Bushman (1980), effluents from sewage plants may be among the major sources of 

nutrients that could have caused 15N-enrichment in Utah Lake. Associated with sewage 

influx into Utah Lake, phosphorus loading into Utah Lake is estimated to be ~ 297.6 tons 

per year, of which approximately 83.5 tons per year are exported to the Jordan River, the 

only surface water outlet of the lake (PSOMAS and SWCA, 2007).



4.5.3 Feedback mechanisms maintaining Utah Lake 
in eutrophic and turbid state

The transformation of Utah Lake from a clear to turbid state has been attributed to 

the resuspension of calcite in the water column by exotic benthivorous fish, including the 

German carp, combined with abrupt changes in dam-controlled lakes (e.g., Deer Creek 

Reservoir), and climate variability, including “the dust bowl” drought of the 1930s 

(Bushman, 1980).

Several factors in concert contribute to the maintenance of Utah Lake in a 

eutrophic state. Land use has allowed unimpeded influx of nutrients to the lake, 

increasing the nitrogen and phosphorus loadings over the historical period. These include 

effluents from farmlands and urban areas, sediment resuspension by the benthivorous 

fishes, including the German carp (Cyprinus carpio), and turbulent mixing from wind 

activity. Nutrient loading from resuspended sediments as well as from irrigation canals 

and storm drains constitute major feedback mechanisms that maintain the lake in a 

eutrophic state. Removal of nutrients, primarily nitrogen and phosphorus, from shallow 

lakes require unconventional remediation methods (Elliot & Brush, 2006).

4.5.4 S13CSom and C:N ratios as evidence of eutrophication

Algal bloom promoted by historical eutrophication is largely responsible for high 

calcite precipitation in the lake. The C and N  isotopic changes are undoubtedly related 

with the development of the agroindustry and urban sprawl in the surrounding area of 

Utah Lake. The decrease in the C:N ratio from 10 ± 0.5 to ~8.0 ± 0.5 between ~24.4 cm 

and the top of the sediments follows the period of land clearing and brush burning 

(Figure 25). Above ~14 cm depth, the bulk organic matter is maintained at constant C:N
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ratio (~8) and the negative 613CBOM values (~ -27%), indicating algal dominated organic 

matter (Figure 26). The period of gradual decreasing 613CBOM values in the core between 

27 cm and 17 cm depth most likely corresponds with the development of more eutrophic 

conditions promoted by effluents from agricultural fields and urban areas around Utah 

Lake. The causes of S13Csom variations are not yet clear, although previous studies 

indicate that dissolved phosphate concentrations enhanced 13C fractionation between 

dissolved CO2 and for algal biomass (Bidigare et al., 1997). The S13Csom values and C:N 

ratios indicate algal dominated sedimentary organic matter (Meyers & Lallier-Verges, 

1999) and corroborates previous findings that show rapid changes in diatom communities 

consistent with a rapid eutrophication in Utah Lake (Bolland, 1974; Grimes &Rushfold, 

1982; Squires & Rushforth, 1986) .

4.5.5 Pollen evidence of land use change in Utah Lake

The pollen relative abundances provide additional evidence of processes resulting 

in changes in the Utah Lake watershed. The changes in relative abundance of grass 

(Poaceae) pollen (Figure 27) are concordant with changes in 210Pbex, magnetic 

susceptibility, and S15N som values (Figure 25). The increase in 210Pbex activity at 3.5 cm 

and 24.5 cm, in concert with an increase in relative abundance of grass pollen and 

charcoal concentration, suggest an increase in erosive events around the lake that 

accompany brush burning in the Utah Lake watershed. At the time of European 

settlement in Utah Valley, irrigation channels were developed, water diverted from major 

rivers (e.g., American Fork), and farmlands and ranches established (Squires &
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Rushforth, 1972). These developments constitute the major drivers of sedimentation, 

nutrient dynamics, and vegetation changes in Utah Valley.

Warm/dry taxa (Artemisia, Chenopodiaceae-Amaranthaceae, Sarcobatus, 

Juniperus) dominate the pollen record in Utah Lake (Figure 27). Pine pollen is also a 

significant part of the arboreal pollen (Figure 27) but represents regional pollen rain. 

Sagebrush (Artemisia) and juniper (Juniperus) constitute cold desert steppe species while 

Chenopodiaceae-Amaranthaceae, as well as Ambrosia-type Asteraceae and greasewood 

(Sarcobatus), constitute species inhabiting saline mud flats around Utah Lake and lake 

margins. Marsh species are dominated by reeds (Phragmites) while others such as 

willow (Salix), Mormon tea (Ephedra), and cattail (Typha) are rare. Cyperaceae, 

Pinaceae, Chenopodiaceae/Amaranthaceae, and Juniperus pollen dominate the 

presettlement (before 1847 A. D.) period but significant changes occurred in the 

postsettlement period (Figure 27).

The significant increase in abundance of grass (Poaceae) pollen above 24.5cm 

sediment depth (Figure 27) suggests that grassland expanded following European 

settlement in Utah Valley. Invasive grasses, including cheat grass (Bromus tectorum L.), 

constitute a major grassland around the lake (Lowry et al., 2007), and may have 

contributed to the observed increase in grass pollen in Utah Lake. A concomitant 

increase in grass pollen (Poaceae) and decrease in Cyperaceae and 

Chenopodiaceae/Amaranthaceae signifies clearing of the plant communities and 

intensification of agriculture from the time of settlement (after 1847 A. D.).



4.5.6 Carbonate accumulation as evidence of enhanced algal 
photosynthesis

The carbonates have relatively uniform isotopic composition across depth with 

mean 618Ocaco3 and 613Ccaco3 values of -9.7 ± 0.2%o and -1.2 ± 0.1%o (VPDB), 

respectively. Given that (1) the sedimentation rate in Utah Lake is very low (0.95-1.05 

mm / year; Wiggins & Assay, 2010), (2), the lake is very shallow and holomictic (Max. 

depth ~4 m), and (3), the lake is algal rich (C:N ratios <10) and eutrophic, the shifts in 

618O and 613C composition likely emanate from carbon concentration mechanisms 

(CCM) by algae during photosynthetic activity.

The increased carbonate content following European settlement in the Utah Valley 

indicates enhanced carbonates precipitating from an increase in algal biomass and 

photosynthesis from eutrophication. In addition, very high carbonate precipitation may 

also be attributed to differences in evaporation/freshwater input ratios and temperature 

(e.g., Winder et al., 2009).

4.5.7 6 OoaCO3, SD and 5 18Oh2o evidence of 
authigenic carbonate in Utah Lake

The SD and S18OH2O values of Utah Lake water (8.0 ± 0.3% and -76.5 ± 0.3%  on 

VSMOW, respectively) indicate that the lake water is 8.5% and 48.5% more enriched 

than the source water (~ -16.5 and -125 %  for 618OH2O and 6D on VSMOW scale, 

respectively) (Figure 30). These data also indicate that water in Utah Lake has a high 

residence time, allowing significant 18O and D enrichment to occur via evaporation. 

Further, the calculated water temperature during carbonate precipitation ranges from 21 

to 24 °C (Appendix D), and falls within the documented temperature range of carbonate
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precipitation in Utah Lake (17- 25 °C; Psomas, 2007; Callister, 2008) and indicates that 

the carbonates are in equilibrium with lake water.

Reconstructing climate records within the postsettlement period is challenging 

since the influx of the materials (nutrients and particulate matter) may mask climate 

signals. High-resolution analysis of historical sedimentary records from Utah Lake is 

important for quantitatively assessing natural climate variability versus anthropogenic 

activities, and for evaluating the impacts of extreme events such as megadroughts on the 

water balance (e.g., Fawcett et al., 2011). Since recent geochemical changes in Utah 

Lake are likely driven by anthropogenic activities, pollutants emitted from industrial, 

agricultural, and urban settlements may be used to develop age models especially where 

radiometric methods (e.g., 210Pb activity profile) are problematic (von Gunten et al., 

2009). Industrial pollutants in sediments such as spheroidal carbonaceous particles 

(reflecting fossil fuel emissions), Cu from a local Cu mine (von Gunten et al., 2009), Pb 

from gasoline (e.g., lead alkyls) (Rizzo et al., 2009), and coliforms and faecal sterols 

associated with sewage (Vane et al., 2010) may also be used to evaluate the post

settlement impact on Utah Lake.

This study shows that anthropogenic modifications of the area surrounding Utah 

Lake for agriculture and urban settlement significantly impact the lake geochemistry, and 

complicate the interpretation of sediment records to help understand the impact of 

regional ecosystem drivers (e.g., precipitation events and drought episodes). The 

reconstruction of climate around Utah Lake during pre-European settlement period may 

be less problematic due to the low impact of anthropogenic disturbance in the watershed. 

In this regard, the influence of climate variability on Utah Lake water balance would



contribute to understanding presettlement changes in response to climate forcing. 

According to previous studies, at least 38 spring areas within the lake contribute about 

16% of its inflow (Brimhall et al., 1976; Bushman, 1980). Employing paleotemperature 

models to lake carbonates would help reconstruct the past temperature regimes in Utah 

lake (e.g., Nelson et al., 2005) and intergration of a paleoaridity index based on plant 

biomarkers (e.g., Polissar & Freeman, 2010) would help disentangle the influence of 

aridity on vegetation cover around the watershed.

4.6 Conclusion

Disturbance at the time of establishment of agriculture and urban settlement 

around Utah Lake has altered nutrient and particulate matter fluxes into lakes traceable 

via 15N enrichment, pollen, charcoal, and loss on ignition at 550 °C and 950 °C. The 

shifts in organic matter fluxes and productivity resulting from cultural eutrophication are 

manifested in C:N ratios, and recorded in charcoal and pollen.
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CHAPTER 5

A s y n t h e t ic  r e v ie w  o f  t e r r e s t r ia l  a n d  

l a c u s t r in e  in d ic a t o r s  o f  c l im a t e  

a n d  d is t u r b a n c e  f r o m  r e c o r d s

in  UTAH LAKE, UT, FOY LAKE,

MT, AND SOIL ORGANic 

MATTER, EAST A FRicA

5.1 Introduction

Ecosystems are inherently complex, heterogeneous in time and space, and are 

comprised of many interacting components that involve the exchange of energy and 

materials (Leavitt et al., 2009). Studies of soils in East Africa and sediments in Utah and 

Foy Lake show that local and regional factors alter vegetation structure and change 

material fluxes into soils and lakes. Linking palaeoecological data such as fossil pollen 

and 613c  values of organic matter in sediments and soils to environmental change 

requires an understanding of inherent variability in ecosystem properties across space and 

time in relation to ecosystem drivers such as fire, precipitation, and herbivory. For 

instance, the woody cover distribution patterns at any given scale are dependent on the 

interacting large-scale variables such as geology, topography, and precipitation, and 

small-scale variables such as plant to plant interaction, herbivory, and fires (Figure 30).
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Figure 30. A hierarchical patch dynamics conceptual model accounting for woody cover 
dynamics at various spatial scales (modified after Gillson, 2004).



5.2 Woody cover patterns in watersheds

Scale-free reconstructions of environments that assume a temporal sequence 

of events that are spatially neutral are ambiguous (Gilson, 2004). At a given spatial or 

temporal scale, the impact of ecosystem drivers (e.g., herbivory, fire, precipitation) may 

vary in their intensity and extent, and can act independently or interactively to transform 

the woody cover in a patch or landscape. The Hierarchical Patch Dynamics Paradigm 

(e.g., Gilson, 2004) provides a conceptual framework to reconstruct woody cover from 

palaeoecological datasets (e.g., stable isotopes) while accounting for spatial and temporal 

variability (Figure 30).

At the lower spatial scales, plants interact with one another and these interactions 

may vary from patch to patch. At micro-scale, shading by woody plants creates 

conducive environments for c 3 herbaceous plants, while competition for resources (e.g., 

light, water, or nutrients) determines how successful seedling establishment is in the 

understorey. consequently, the nature of plant-plant interaction may vary from 

competition where shading and chemoallelopathy may reduce the chances of certain 

plants from establishing (e.g., c 4 plants), or facilitation through hydraulic lifting and 

shading may increase the chances of certain plants (e.g., c 4 plants) to establish.

Patches are spatially and structurally discrete plants communities that differ from 

other surrounding patches, and are defined by species interactions and local ecosystem 

factors and processes such as fires, herbivory, soil types, and moisture availability. 

Therefore, individual patches may be at different succession stages from other 

surrounding patches. Several contiguous patches form vegetation assemblages that 

characterize landscape-scale and regional-scale vegetation patterns. At landscape- and
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regional-scale, the variations in geology, topography, rainfall, and hydrology confer 

greater influence of woody cover distribution patterns.

The factors driving woody cover dynamics are numerous and poor understanding 

of the physiological and ecological mechanisms mediating climate-induced woody cover 

dynamics limits the ability to model or project woody cover changes through time (e.g., 

McDowell et al., 2008; McDowell & Sevanto, 2010). For instance, rainfall events are not 

randomly distributed in time but tend to occur in clusters (Schwinning & Sala, 2004). 

Moisture availability patterns set up by large-scale drivers of precipitation are offset by 

topography and orography (William & Ehleringer, 2000; Loik et al., 2004).

Subsequently, other processes alter soil moisture patterns after a precipitation event, 

resulting in vertical and horizontal heterogeneity in soil water availability for uptake by 

plant roots (Loik et al., 2004). Factors causing such moisture heterogeneity within a site 

include soil depth, soil texture, petrocalcic layers, parent material, organic matter content, 

snow-pack depth, snow redistribution, vegetation type, leaf area index, and soil surface 

characteristics (Loik et al., 2004).

Moisture availability determines tree recruitments and mortality across spatial and 

temporal scales. For instance, plants that operate at narrow hydraulic safety margins like 

trembling aspen (Populus tremuloides) are predisposed to hydraulic failure and therefore 

susceptible to drought-induced mortality that may occur at landscape-scale and regional- 

scale (Anderegga et al., 2012). A hydraulically based carbon-starvation theory developed 

by McDowell et al. (2008) to account for woody cover dynamics considers carbon 

balance to be impaired by drought-induced hydraulic failure via stomatal closure,



resulting in carbon starvation and reduced resistance to biotic agents such as insect 

attacks like spruce beetles.

Ecosystem drivers such as fires and herbivory provide positive feedbacks that 

prevent the establishment of woody cover as may be potentially supported by the 

prevailing climate. Further, the interaction between temperature and soil moisture 

dynamics has been implicated in recent increase in fire activity in Western U. S. 

(Westerling et al., 2006). Above normal spring temperatures (McDowell et al., 2008) and 

recent increase in human-induced dust deposition (Neff et al., 2008) result in earlier 

snowmelt that results in a longer fire season while warmer summers result in lower soil 

moisture. Therefore, woody cover dynamics is a function of independent and interactive 

factors that occur at any given scale and need to be accounted for when reconstructing the 

past environments.

5.3 Woody cover reconstruction in East Africa

In relation to East Africa, the long-term changes in woody cover have been linked 

to tectonically driven aridification during the development of East African Rift System 

(EARS) in the Late Neogene (8-2 million years ago) (Sepulchre et al., 2006). On the 

eastern branch (in southern Ethiopia and the Turkana depression in northern Kenya), the 

uplift began during the Eocene-Oligocene times proceeding to reach the maximum uplift 

at the Plio-Pleistocene interval. On the western branch of the EARS, the uplift started in 

the central Tanganyika Basin at about 12 to 10 Ma, followed by later phases of major 

uplift between 5 and 2 Ma in the Tanganyika and Malawi rifts during the middle-late 

Miocene. These uplifts, mostly oriented north-south and bordered by crests that
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culminate between 1500 and 5100 m, resulted in the reorganization of the circulation 

patterns in the region. The direction of low tropospheric winds that convey a lot of 

moisture responsible for precipitation in the region was altered by the continental 

topography, resulting in a stronger meridional flow rather than zonal moisture transport. 

These shifts in the direction resulted in clustered precipitation patterns in the region. The 

impact of tectonically driven changes in African topography on climate, especially the 

monsoon rainfall patterns, has therefore been a major determinant of vegetation patterns 

in East Africa. These patterns persist today as exemplified by the diversity of 

physiognomies in this region. Therefore, the reconstruction of woody cover in East 

Africa ought to account for geomorphological, hydrological, climatic, and geological 

factors at any specific spatial and temporal scale.

In East Africa, there is a lot of spatial variability in woody cover, where patches 

with interlocking canopies coexist with patches with open canopy woodland, and 

grasslands. The woody cover abundance among these patches defines the woody cover 

abundance at a landscape scale and regional scale. In East Africa, the variations in the 

abundance of C3 and C4 plants at various scales may be inferred from the calibration 

model based on the 613C of surface soil samples with reference to the spatial scale under 

consideration (Chapter 2). Concerted changes in the vegetation dynamics and nutrient 

cycling among many patches are likely to manifest at landscape-scale or regional-scale. 

The conceptual understanding of how ecosystem processes alter the ecosystem structure 

and function from small to large spatial and temporal scales is necessary for enhancing 

reconstruction of past environments. Therefore, moisture availability does not in itself
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determine the woody cover, as is evident in the poor correlation between woody cover 

and water deficit in East Africa (Chapter 2).

Fire is an important driver of ecosystem structure and provides a positive 

feedback mechanism that maintains open canopies (Hirota et al., 2011; Staver et al.,

2011; Keeley & Rundel, 2005) and results in discontinuous woody cover at intermediate 

rainfall (1000 to 2500 millimeters) in the tropics (Hirota et al., 2011; Staver et al., 2011). 

Reconstructing the changes in vegetation cover within watersheds in East African 

necessitates a multiproxy approach that includes pollen, charcoal, grass cuticles, grass 

phytoliths (Mohammed et al., 1996; Mworia-Maitima, 1997), and stable isotope records 

(Gillson, 2004).

5.4 The influence of woody cover on material fluxes in lakes

Geomorphology, disturbance, hydrology, and climate are the major factors that 

drive material fluxes and biogeochemical transformation that are reflected in stable 

isotope composition in lake sediments. Sediments in Foy Lake (Chapter 3) and Utah 

Lake (Chapter 4) exhibit variations in 613C values of bulk organic matter (hereafter 

613CBOM) and C:N ratio with the contribution of terrigenous organic matter relative to 

autochthnous organic matter. In addition, the ratio of arboreal to nonarboreal pollen 

helps to account for the changes in woody cover in the watershed and therefore the 

contribution of terrigenous organic matter to lakes. These results indicate that watersheds 

with high fractional woody cover (FWC) are likely to experience a greater influx of 

organic matter derived from woody cover into lakes in the form of dissolved organic 

carbon (DOC), woody fragments, pollen, and charcoal than watersheds with low FWC.
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Nutrient-poor environments produce small amounts of litter and conserve 

nutrients in long-lived and recalcitrant tissues, thus reinforcing the infertile environment. 

In general, plant species occupying environments of low nutrient supply exhibit a higher 

degree of sclerophylly and evergreenness and are characterized by lower plant growth 

rate and higher resource conservation than plants growing in environments with high 

nutrient supply (Ordonez et al., 2009). The soil C:N is a good indicator of the quality of 

the soil organic matter.

5.5 The influence of topography, hydrology, and bathymetry 
on material and energy fluxes in lakes

The lake bathymetry, water depth, mode of water flow into the lake (surface or 

groundwater), and steepness of adjacent slopes all determine the rates of terrigenous 

material flux into the lake (Figure 31-32). In this study, the groundwater-fed Foy Lake is 

deep (~40 m deep) and surrounded by steel slopes (~45°) and therefore experiences a 

rapid influx of terrigenous materials as well as sediment focusing of materials derived 

from shallow sections of the lake (Chapter 3). In contrast, Utah Lake is shallow (~4 m at 

the deepest point), mainly surface water-fed, and is surrounded by gentle slopes (<10°) 

and therefore likely to experience low influx of terrigenous materials (Chapter 4). 

Moreover, lakes that are sufficiently deep to have well-defined benthic zones (e.g., Foy 

Lake; ~ 40 m deep) have high tendencies for sediment focusing as benthic environments 

are stirred up by disturbance (Chapter 3) or wind-driven sediment focusing arising from 

climate-associated changes in lake water level (Stone & Fritz, 2004) and redeposited in 

deeper sections of the lake, causing a shift in benthic to planktonic ratios (Chapter 3). 

These lines of evidence reveal that topography, bathymetry, and hydrology influence the



Figure 31. A conceptual model of material fluxes into and out of a lake. The pathways of material fluxes in a shallow lake having 
surface water inlets and outlets (e.g., Utah Lake) are shown.
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Figure 32. A conceptual model of material fluxes into and out of a lake. The pathways of 
material fluxes in a deep lake lacking inlets of outlets (e.g., Foy Lake) are shown.



rates of materials fluxes that may interact with ecosystem drivers such as climate 

variability and anthropogenic disturbance to alter material fluxes into lakes.

5.6 The role of fire on material fluxes in lakes

Plants occupying nutrient-poor environments exhibit lower plant growth rates, 

making them less productive and promoting conservation of nutrients in long-lived and 

recalcitrant tissues (Ordonez et al., 2009). In contrast, plant species adapted to growing 

in nutrient replete habitats exhibit higher leaf nitrogen concentration per mass (mg g-1), 

specific leaf area (SLA, m2 kg -1), leaf nitrogen concentration per mass (LNCmass mg g- 

1), leaf phosphorus concentration per mass (LPCmass mg g-1), and leaf N:P (Ordonez et 

al., 2009). Leaf traits like SLA, LNC, and LPC are positively related to plant relative 

growth rates, leaf carbon assimilation rates, and energy supply and their leaf traits allow a 

fast use of nutrients and growth but for shorter time spans (Ordonez et al., 2009). 

Consequently, the soil C:N ratio is a good indicator of the quality of the soil organic 

matter (Ordonez et al., 2009). Temperature and precipitation primarily determine the 

rates of decomposition and mineralization, factors that control the forms and levels of 

nutrients available in the soil (e.g., Austin & Vitousek, 2000; Amundson et al., 2003).

5.7 5 15N rOM enrichments as indicator of nitrogen sources

The presettlement 6 15NBOM values in Foy lake and Utah Lake were both low 

(generally < 6% ), which indicates nutrients derived from mineralization and nitrogen 

fixation (Mayer et al., 2002). These 6 15NBOM values conform to climate-induced nitrogen 

mineralization whereby mean annual precipitation and mean annual temperature are the
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main drivers of nitrogen cycling (e.g., Martinelli et al., 1999; Amundson et al., 2003; 

Bustamante et al., 2004; Codron et al., 2005; Craine et al., 2009). Understanding how 

nitrogen availability and gaseous nitrogen emissions within watershed affect soil and 

sediments S15N values is useful in reconstructing ecosystem changes from climate, land 

cover, and land use.

As evident from the studies of Utah Lake and Foy Lake sediments, anthropogenic 

disturbance and fire episodes in the watershed are major drivers of changes in nutrient 

cycling, sedimentation, and lake sediment biogeochemistry. The S15N values of bulk 

organic matter in sediments (6 15NBOM) are reliable indicators of nutrient influx into lakes. 

For instance, a 15N enrichment of ~ 3%  in Utah Lake (Chapter 4) following European 

settlement to ~ 8%o is consistent with an influx of nutrients derived from agriculture and 

urban sources (Mayer et al., 2002). Similarly, there was a significant 15N enrichment of 

at least ~ 2.5 %  in Foy Lake (Chapter 2) following timber harvesting, which indicates 

rapid nutrient loadings in the lake from the watershed.

5.8 5 15NBOM enrichments as indicator of fire episodes

The transformation of organic nitrogen into inorganic nitrogen during fire is 

accompanied by an increase in soil S15N values due to kinetic fractionation associated 

with nitrogen volatilization (Grogan et al., 2000). In the pre-settlement period, the shifts 

in 6 15N BOM values of Foy Lake were influenced by fire episodes (Chapter 3). The pre

settlement trends in 6 15NBOM values of Foy Lake were less abrupt than during the pre- 

and post-settlement period. This trend is consistent with other observations that show 

that fire creates an initial pulse of available nitrogen that lasts a few months after burning,
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whereupon net nitrogen mineralization determines the subsequent increase in available 

nitrogen (Monleon et al., 1997). Through combustion of organic materials, fire promotes 

the pyloric release of nitrogen into the soil, mainly as ammonium (NH4+) but also nitrate 

(NO3-) and nitrite (NO2-) (Grogan et al., 2000; Gumeno-Garcia et al., 2000; Wan et al., 

2000). Increased soil repellency from surface accumulation of hydrophobic substances in 

ashes following a fire event (Gumeno-Garcia et al., 2000) enhances surface run-off. The 

nutrients, charcoal, and ashes arising from fire events flushed during snowmelt events 

constitute the major source of nutrient subsidies to lakes and rivers, as observed in the 

positive shifts in 6 15NBOM values in Foy Lake following a fire episode (Chapter 3). 

Moreover, fire intensity, frequency, and duration determine the extent of nitrogen loss via 

volatilization (Gumeno-Garcia et al., 2000) and grasslands have significantly lower losses 

than forests (Wan et al., 2000). Studies indicate that nutrients accumulated in pre-melt 

waters in winter become flushed into rivers during spring snowmelt (Piatek et al., 2005) 

and constitute nutrient sources in spring snowmelt-fed lakes like Foy Lake.

5.9 Conclusion

This research established that (1) increases in woody cover is accompanied by more 

increased 13C depletion of the 6 13C values of tropical soils from greater contribution of C3 

biomass to soil organic matter, but species interactions, geomorphology, hydrology, and 

edaphic factors cause spatial heterogeneity in woody cover while ecosystem drivers such 

as fire and precipitation cause woody cover to vary both spatially and temporally; (2 ) the 

6 13C values and C:N ratios of organic matter of sediments of temperate lakes reflect the 

contribution of terrigenous relative to autochthnous organic matter in lake sediments,

131



132

where woody cover in the proximity of a lake is a major determinant of the contribution 

of terrigenous organic matter into lakes; (3) fires and anthropogenic modifications of 

watersheds through agriculture, urban development, and timber harvesting increase 

terrigenous material influx into lakes that complicate the reconstruction of climate 

records archived in lake sediments; and (4) hydrology and geomorphology of watersheds 

influences the rate of terrigenous material influx into lakes, while lake depth and 

bathymetry determines the degree of sediment focusing within lakes, and therefore the 

organic and inorganic matter composition of the lake sediments.
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APPENDIX A

SUPPLEMENTAL INFORMATION FOR CHAPTER 1

Table 4. A summary of equations used to model that past water temperature from 6 18OH2O, 5DH2O, and 6 18Ocaco3 values.
Equation no. Temperature (°C) Reference Material
1 16.5 - 4.3*((1.01025*(103 + 518Ocalcite) -103) - (1.0412*(103 + (0.97002*™18Owater -29.98)) - 

103)) + 0.14*((1.01025*(103 + S18Ocalcite) - 103) - (1.0412*(103 + (0.97002*™18Owater -29.98)) - 
103))2

Epstein et al. 1953 Calcite

2 16.9 - 4.2*((1.01025*(1000 + 518Ocalcite) - 103) - (1.0412*(103 + (0.97002*518Owater -29.98)) - 
103)) + 0.13*((1.01025*(103 + S18Ocalcite) - 103) - (1.0412*(103 + (0.97002*518Owater - 29.98)) - 
103))2

Craig 1965 Calcite

3 16 - 4.14*(518OcaCO3 - §18Oh2O + 0.13*(518Ocalcite + S ^ o f Anderson & Arthur 1983 Calcite
4 ((106*2.78)/(103*ln((103 + 518OcaCO3/( 103 + 518OH2O))+2.89))05 - 273.15 Kim & O'Neil1997 Calcite
5 (18.03*103)/(103*ln((103 + S18OcaCO3 /(103 + 518OH2O)) + 32.17) - 273.15 Kim & O'Neil 1997 Calcite
6 21.8 - 4.69*(518OcaCO3 - (§18Om o - 0.2)) Grossman & Ku (1986) Aragonite
7 20.6 - 4.34*(518OcaCO3- (§18Om o - 0.2)) Grossman & Ku (1986) Aragonite
8 20 - 4.42*(518OcaCO3- §18Om o) Bohm et al. (2000) Aragonite
9 (17.88*1000)/(1000*LN((1000+[1.03091* 518OcaCO3 + 30.91])/(1000+ 518OH2O)) + 30.85) - 

273.15
Kim et al. (2007) Aragonite

10 (18.56*1000)/(1000*LN((1000 + [1.03091* 518OcaCO3 + 30.91])/(1000+ 518OH2O))+33.49)- 
273.15

Patterson et al. (1993) Aragonite

11 (18.56*1000)/(1000*LN((1000+[1.03091* 518OcaCO3 + 30.91])/(1000+ 518OH2O))+32.54)- 
273.15

Thorrold et al. (1997) Aragonite

12 (16.74*1000)/(1000*LN((1000+[1.03091* 518OcaCO3 + 30.91])/(1000+ 518OH2O))+26.39)- 
273.15

White et al. (1999) Aragonite

13 (20.44*1000)/(1000*LN((1000+[1.03091* 518OcaCO3 + 30.91])/(1000+ 518OH2O))+41.48)- 
273.15

Zhou & Zheng (2003) Aragonite



APPENDIX B

SUPPLEMENTAL INFORMATION FOR CHAPTER 2

Table 5. A summary of the average 613C values of soil samples for canopy gaps, 
forests, and combined (forests and gaps) of the sites, and woody cover (%WC) 
values. The corresponding standard deviations are indicated. ________ _____

Location
Veg.
class Lat. Long.

Elev.
(m)

8 13C G aP 

(%o±stdev)
8 C F o r e s t

(%o±stdev)
8 13C8 C a v e ra g e

(%o±stdev)
% W C
(±stdev)

Awash G 11.069 40.536 516 -18.2±1.1 -21.5±4.1 -18.6±1.8 0.13±0.06
Awash F 11.067 40.539 515 -22.9±2.1 -23.6±1.3 -23.4±1.5 0.77±0.12
Ileret F 4.317 36.261 391 -23.6±0.6 -25.8±1.2 -25.0±1.0 0.63±0.05
Ileret G 4.277 36.221 364 -17.4±0.8 -18.5±2.0 -17.4±0.8 0.01±0
Ileret B 4.287 36.260 435 -21.7±1.1 -22.6±0.8 -22.2±0.9 0.6±0.05
Kakamega f F 0.356 34.861 1628 NV -25.6±1.2 -25.6±1.2 0.91±0.06
Kakamega f G 0.348 34.869 1571 -14.7±0.7 -21.3±0.2 -15.1±0.6 0.06±0.05
Meru f B -0.070 38.413 342 -20.2±0.6 -25.4±0.6 -23.6±0.6 0.66±0.04
Meru * F -0.072 38.419 330 -25.2±0.1 -26.0±1.2 -25.8±1.0 0.71±0.2
Meru * G 0.180 38.227 590 -15.9±1.3 -18.6±1.9 -16.2±1.4 0.11±0.01
Mzima Springs F -4.337 38.022 690 -21.1±3.9 -24.9±1.0 -23.7±2.3 0.69±0.02
Nakuru * B -0.466 36.103 1798 -14.7±2.0 -17.4±1.3 -15.8±1.8 0.4±0.06
Nakuru * F -0.418 36.125 1783 -21.8±1.8 -22.1±1.9 -22.0±1.9 0.74±0.13
Nakuru * G -0.417 36.126 1779 -14.0±1.4 -13.6±0 -14.0±1.4 0.02±0.01
Nakuru * G -0.358 36.059 1799 -14.9±1.1 NV -14.9±1.1 0.02±0.01
Nairobi * F -1.348 36.767 1792 -23.4±1.4 -24.2±1.5 -24.0±1.5 0.8±0.07
Nairobi * G -1.352 36.796 1689 -14.6±0.5 -18.2±2.0 -14.7±0.6 0.02±0
Samburuf F 0.567 37.528 872 -27.1±0 -27.6±0 -27.5±0 0.82±0.13
Samburu f G 0.582 37.537 884 -19.9±1.5 -22.9±1.6 -20.6±1.6 0.22±0.02
Shimba Hillf F -4.235 39.418 405 NV -27.7±0.5 -27.7±0.5 0.77±0.04
Shimba Hillf G -4.234 39.419 395 -18.1±1.6 No data -18.0±1.6 0.02±0.01
Arobuke Sokoke f F -3.322 39.925 30 -25.2±1.1 -26.2±0.8 -26.0±0.9 0.78±0.07
Arobuke Sokoke f F -3.321 39.887 60 NV -26.6±0.8 -26.6±0.8 0.97±0.02
Arobuke Sokokef F -3.322 39.932 26 -27.5±1.2 -27.7±0.8 -27.7±0.8 0.97±0.02
Turkwell B 3.140 35.868 449 -23.7±1.2 -25.4±1.3 -24.4±1.3 0.41±0
Tana River f F -1.877 40.140 44 -26.4±2.4 -28.1±0.3 -27.8±1.0 0.84±0.14
Tsavo East* B -3.362 38.645 505 -18.0±0.9 -23.5±2.8 -20.2±1.9 0.4±0.01
Tsavo West * B -2.747 38.129 884 -18.7±1.1 -21.5±0.9 -19.8±1.1 0.39±0.03
f  symbolizes a national reserve 
* symbolizes a national park 
G symbolizes a grassland 
F symbolizes a forest 
B Symbolizes a bushland 
WG symbolizes a wooded grassland
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Figure 33. The seasonal AG-NPP response patterns as observed in Spot NDVI values for 
some of the sites in Eastern Africa covered in this study. The sites with high woody 
cover (e.g., Arabuko Sokoke and Kakamega forests) have high NDVI values while areas 
with low woody cover (e.g., Ileret and Awash) have low NDVI values. The areas 
between these extremes consist of a combination of physiognomies ranging from 
woodland, bushland, thicket, shrubland, and grassland. The temporal NDVI variations 
coincide with the abundance of herbaceous vegetation that are dominated by C4 
vegetation.
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Figure 34. Comparison between a 12-year average and standard deviation (Stdev) of 
SPOT S10 NDVI series data (top panel) to MODIS Vegetation Continuous Fields (VCF) 
estimates of tree and herbaceous woody cover (bottom panel) for Eastern Africa. The 
areas with stronger variation in AG-NPP (high NDVI Stdev) have a greater proportion of 
herbaceous plants than areas with higher woody cover. These trends illustrate that 
herbaceous plants that are dominated by C4 grasses account for significant variation of 
AG-NPP in the East African region in open grasslands and wooded environments.
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Figure 35. Mzima Springs WV01 orthoimagery acquired on 30-Jan-2010, showing the
study area used in the woody cover regression analysis.
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Figure 36. Arabuko Sokoke WV01 orthoimagery acquired on 14-Jan-2008, showing from
left to right Cynometra forest, mixed forest, and Brachystegia forest study sites used in
the woody cover regression analysis.



144

0.208° N-

0.2° N-

0.192° N-

0.183° N-

0.175° N-

0.167° N-

0.158° N-

0.15° N-

38.208° E 38.217° E 38.225° E 38.233° E 38.242° E 38.25° E 
____ j______________ i______________ i______________ i______________ i______________ i—

“0.208° N

-0.2° N

-0.192° N

-0.183° N

-0.175° N

-0.167° N

-0.158° N

875 437.5 875 Meters

N

I

-0.15° N

----- 1-----
38.208° E

----- 1-----
38.217° E

----- 1-----
38.225° E

----- 1-----
38.233° E

----- 1-----
38.242° E

----- r
38.25° E

Figure 37. Meru WV01 orthoimagery acquired on 2-C)ct-2008, showing the open
grassland study area used in the woody cover regression analysis.
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Figure 38. Nakuru WV01 orthoimagery acquired on 30-Nov-2008, showing the dense
forest study area used in the woody cover regression analysis.
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Figure 39. Nakuru WV01 orthoimagery acquired on 30-Nov-2008, showing the grassland
study area used in the woody cover regression analysis.
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Figure 40. Tana River IKONOS-2 orthoimagery acquired on 15-Feb-2007, showing the
grassland and riparian forest study areas used in the woody cover regression analysis.
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Figure 41. Nairobi National Park IKONOS-2 orthoimagery acquired on 15-Feb-2007,
showing the grassland and riparian forest study areas used in the woody cover regression
analysis.
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Figure 42. Awash QB02 orthoimagery acquired on 23-Sep-2008, showing the grassland
and riparian forest study areas used in the woody cover regression analysis.
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Figure 43. Kakamega Forest QB02 orthoimagery acquired on 25-Aug-2004, showing the
grassland and forest study areas used in the woody cover regression analysis.
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Figure 44. Shimba Hills IKONOS-2 orthoimagery acquired on 13-Jan-2008, showing the
grassland and forest study areas used in the woody cover regression analysis.
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Figure 45. Ileret WV01 orthoimagery acquired on 26-Nov-2008, showing the bushland
study area used in the woody cover regression analysis.
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Figure 46. Ileret QB02 orthoimagery acquired on 23-Sep-2008, showing the riparian
forest study area used in the woody cover regression analysis.
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Figure 47. QB02 orthoimagery acquired on 7-Jan-2008, showing the wooded grassland
and riparian woodland study areas used in the woody cover regression analysis.
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Figure 48. QB02 orthoimagery acquired on 22-Jan-2004, showing the wooded grassland
and riparian woodland study areas used in the woody cover regression analysis.
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Figure 49. WV02 orthoimagery acquired on 27-Jan-2010, showing the wooded Acacia
bushland study area used in the woody cover regression analysis.



APPENDIX C

SUPPLEMENTAL INFORMATION FOR CHAPTER 3
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Figure 50. A description of Foy Lake freeze core. Historical events and the 
corresponding varves in which they are recorded are indicated. The annual couplets, SS 
(Spring-Summer) and FW (Fall-Winter), are recognized from color change on a section 
of the sediment core. The dark-brown to olive-green color corresponds to FW while 
olive-green to white corresponds to the SS part of the couplet. The Scanning Electron 
Microscope (SEM) images of samples obtained from the brown, green, and white 
sections of the core reveal the materials responsible for the color change. During the 
summer, carbonates accumulate, resulting in dissolution of diatom frustules but favoring 
ostracods (A-B) and hence white color. At the start of spring, there is an influx of plants 
pollen (Pinus sp.) and growth of algae as well as diatoms (C-D) and hence the olive- 
green color. At the transition from fall to winter, the centrate and pennate diatoms 
dominate as populations of algae disappear and hence the brown color. However, there 
are large variations in color throughout that result from various events and processes 
incorporated in sediments.
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Figure 51. EDX analysis of the rosette-like crystals within the white section of the bottom 
varves of Foy Lake freeze core described in Figure 1 that reveal the mineral as high 
magnesium calcite.
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Figure 52. Foy Lake 6 13C b o m  versus C:N ratio scatterplot indicating the expected values (gray polygon) for lacustrine algae, 
C3, and C4 derived organic matter (modified after Meyers & Lallier-Verges, 1999). Foy Lake organic matter is derived from 
C3 plants and lacustrine algae. 159
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Figure 53. Foy Lake 615Nbom versus %N ratio scatterplot. There is no correlation 
between 615Nbom and % N. However, there is a wide range in % N and 615N bom values 
range from almost 0.1 to 4.6%, and 0.5 to 7.8%o, respectively.
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Figure 5 4 . The scatter plot of 618O h 2o  and 6 13D H2o  of Foy Lake water. The plot shows 
the Foy Lake water as significantly enriched relative to the source water, as inferred from 
the intersection of the local meteoric water line of Montana (MTLMWL) as modeled 
from Kendall and Clopen (2000) data and Global Meteoric Waterline (GMWL) using 
Craig’s equation (Craig, 1961).
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Figure 55. The pollen abundance record of Foy Lake. The arboreal pollen record shows conifer dominated woodland in Foy 
Lake watershed. Pinus and Cupressaceae are the most dominant woody cover taxa.
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Figure 56. A timeline of historical events and precipitation records around Foy Lake 
relative to the ratio of pollen counts for boreal to nonarboreal plant species (BP:NAP). 
The precipitation records are based on Western Regional Climate Center 
(http://www.wrcc@dri.edu) data for Kalispell, MT.
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Figure 57. The conceptual model of material fluxes in Foy Lake (modified after Fritz & Stone, 2004). The lake receives particulate 
matter (dust, charcoal, and pollen) either via aeolian or melt water, and dissolved materials via precipitation, melt water, and 
groundwater pathways. Decrease in lake water level causes materials from shallow sections of the lake (including benthic areas) to be 
eroded and redeposited into deeper sections of the lake (sediment focusing). The influx of these materials causes changes in C:N

• 15 13 • 18 13ratios, 6 N b o m , 6 C b o m  of organic matter, and 6 Oh2o and 6 C c aco3 of carbonates.
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Figure 57 continued.
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Figure 58. GAP Analysis land cover and land use map of Utah Lake surroundings. The proportions of different land cover / land use 
classes of Utah Lake and indicate a larger area is under agriculture.



Table 6. Temperature reconstruction of Utah Lake from S18Ocalcite (%o) VPDB and S18Owater (%o) VSMOW

818Ocalcite 
(%o) VPDB

S18Owater (%) 
VSMOW

T (°C); Epstein 
et al. (1953)

T (°C); Craig 
(1965)

T (°C); 
Anderson & 
Arthur (1983)

T (°C) 
Friedman & 
O'Neil (1977)

T (°C) Kim & 
O'Neil (1997)

-9.5 -8.2 21.2 21.5 21.6 21.7 21.0

-10 -8.2 23.5 23.7 23.9 24.1 23.4
The sedimentary 518OCaCO3 values range from 9.3% to 10 %  in VPDB scale while the lake water S18OH2O and 8D values are water 
8.0±0.3% and -76.5±0.3%o on VSMOW scale respectively. Based on these observations, the modeled temperature of Utah Lake 
that range from 20 to 25 °C and is comparable to the documented temperature range for carbonates precipitation in Utah Lake 
(17- 25 °C; Psomas 2007; Callister 2008) and indicates that the carbonates are well-equilibrated with lake water.
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Figure 59. Utah Lake materials flux model as influenced by the lake bathymetry.
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Figure 59 continued.
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